
Workshop Preprints

 QuASoQ 2016
4th International Workshop on
Quantitative Approaches to Software Quality

co-located with APSEC 2016
Hamilton, New Zealand, December 6th , 2016

Editors:

Horst Lichter, RWTH Aachen University, Germany
Toni Anwar, UTM Johor Bahru, Malaysia
Thanwadee Sunetnanta, Mahidol University, Thailand
Konrad Fögen, RWTH Aachen University, Germany

 Table of Contents

Trying to Increase the Mature Use of Agile Practices by Group Development
Psychology Training - An Experiment

3

Lucas Gren and Alfredo Goldman

Predicting Quality of Service (QoS) Parameters using Extreme Learning Machines
with Various Kernel Methods

11

Lov Kumar, Santanu Rath and Ashish Sureka

Local Variables with Compound Names and Comments as Signs of Fault-Prone
Java Methods

19

Hirohisa Aman, Sousuke Amasaki, Tomoyuki Yokogawa and Minoru Kawahara

Towards improved Adoption: Effectiveness of Research Tools in Real World 27
Richa Awasthy, Shayne Flint and Ramesh Sankaranarayana

Code Coverage Analysis of Combinatorial Testing 34
Eun-Hye Choi, Osamu Mizuno and Yifan Hu

Sustainability Profiling of Long-living Software Systems 41
Ahmed Alharthi, Maria Spichkova and Margaret Hamilton

Improving Recall in Code Search by Indexing Similar Codes under Proper Terms 49
Abdus Satter and Kazi Sakib

 Organization

Horst Lichter (Chair), RWTH Aachen University, Germany
Toni Anwar (Co-Chair), UTM Johor Bahru, Malaysia
Thanwadee Sunetnanta (Co-Chair), Mahidol University, Thailand
Matthias Vianden, Aspera GmbH, Aachen, Germany
Wan M.N. Wan Kadir, UTM Johor Bahru, Malaysia
Taratip Suwannasart, Chulalongkorn Univiversity, Thailand
Tachanun Kangwantrakool, ISEM, Thailand
Jinhua Li, Qingdao University, China
Apinporn Methawachananont, NECTEC, Thailand
Jarernsri L. Mitrpanont, Mahidol University, Thailand
Nasir Mehmood Minhas, PMAS - AAUR Rawalpindi Pakistan
Chayakorn Piyabunditkul, NSTDA, Thailand
Maria Spichkova, RMIT University, Melbourne, Australia
Sansiri Tanachutiwat, Thai German Graduate School of Engineering, TGGS, Thailand
Hironori Washizaki, Waseda University, Japan
Hongyu Zhang, Tsinghua University, China

QuASoQ 2016 Workshop Preprints

1

Trying to Increase the Mature Use of Agile Practices
by Group Development Psychology Training

— An Experiment

Lucas Gren
Chalmers and the University of Gothenburg

Gothenburg, Sweden 412–92 and
University of São Paulo

São Paulo, Brazil 05508–090
Email: lucas.gren@cse.gu.se

Alfredo Goldman
University of São Paulo

São Paulo, Brazil 05508–090
Email: gold@ime.usp.br

Abstract—There has been some evidence that agility is con-
nected to the group maturity of software development teams. This
study aims at conducting group development psychology training
with student teams, participating in a project course at university,
and compare their group effectiveness score to their agility usage
over time in a longitudinal design. Seven XP student teams were
measured twice (43+40), which means 83 data points divided into
two groups (an experimental group and one control group). The
results showed that the agility measurement was not possible
to increase by giving a 1.5-hour of group psychology lecture
and discussion over a two-month period. The non-significant
result was probably due to the fact that 1.5 hours of training
were not enough to change the work methods of these student
teams, or, a causal relationship does not exist between the two
concepts. A third option could be that the experiential setting
of real teams, even at a university, has many more variables
not taken into account in this experiment that affect the two
concepts. We therefore have no conclusions to draw based on the
expected effects. However, we believe these concepts have to be
connected since agile software development is based on teamwork
to a large extent, but there are probable many more confounding
or mediating factors.

I. INTRODUCTION

Agile Project Management and its methods evolved during
the nineties on ideas from lean production and more flexible
product development [1], but also from practical experience
saving IT projects that were about to fail [2]. The main differ-
ence between lean production and agile project management
is that both management ideas admit they do not know what
the best end-product would look like far in advance [3]. The
agile development processes are often intimately connected
to high performing, self-managing and mature teams [4] and
the way group norms are set has been shown to increase
performance [5]. Agile development, as compared to plan-
driven ditto, implies more communication and focus on human
factors, which make the group psychology aspects of teams
a key ingredient [6]. However, the agile processes do not
explicitly include the temporal perspective of what happens
to all teams over time from a group maturity perspective.

In this experiment, we conducted a longitudinal study of
seven agile teams to see if the group development affects
process agility. By giving half of the teams training in group

psychology theory we hoped to see an effect on their measured
agility. However, by only giving a 1.5-hour lecture, we did not
see such an effect. We instead discuss reasons for our non-
significant results and suggest next steps for future attempts at
finding such effects in complex social systems.

We follow Jedlitschka, Ciolkowski and Pfahl’s [7] guide-
lines on how to to report experiments on software engineering
throughout this paper. We will therefore start by giving a
theoretical background (Section II), describe the experiment
in detail (Section III), analyze the data and show descriptive
statistics and tests (Section IV), and, finally, discuss the result
(Section V) and provide conclusions and suggestions for future
work (Section VI).

A. Context

When software development teams transition to an agile
approach (i.e. more team-based work) more of the process
is dependent on how well the team cooperates [4]. The agile
adoption sometimes fails due to the fact that an agile transition
is a cultural change as well, which impose new constellations
of teams [8], [9]. To further explore the causal relationship
between the group dynamics and agile practices over time,
would therefore be interesting, both from a research and an
industrial perspective, in order to guide agile adoptions better.

B. Problem statement

Many aspects of group dynamics come into play in the
team-based workplace [10]. There are studies showing a
correlation between group maturity and agile concepts (see
e.g. [11]), however, little is known of any causal relationship
between them. Correlation analysis only show the connection
between the two. If the mature usage of agile practices are
directly dependent on group development aspects has not yet
been investigated. Therefore, it would be interesting to see
if group psychology training of agile software development
teams could increase the adoption of concrete agile practices.

QuASoQ 2016 Workshop Preprints

3

II. BACKGROUND

A. Agile methods (processes)

Agile methodologies can be seen as an approach rather
than a technique that mostly change the culture and values
behind managing projects. There are some more concrete agile
methods, but they all basically share the same values. However,
in order to understand how these methods work in practice, we
will now shortly present some of the agile practices and how
the values are implemented.

a) eXtreme programming (XP): eXtreme programming
was the first method created by the agile community and is
the most researched method [12] and is considered relatively
strict and controlled. The practices that implement the agile
principles are [13]:

1) The planning game. In the beginning of each iter-
ation, the team, managers, and customers meet and
write requirements in form of user stories (written in
clear natural language and in a way that everybody
can understand). During these meetings the whole
group estimates and prioritizes the requirements.

2) Small releases. Working software is up and running
and delivered very fast and new versions are released
continuously, from every few days to every few
weeks.

3) Metaphor. Customers, managers, and developers
model the system after a constructed metaphor or set
of metaphors.

4) Simple design. Developers are asked to keep design
as simple as possible.

5) Tests. The development is test-driven (TDD), i.e., the
test are written before the code.

6) Re-factoring. The code should be revised and simpli-
fied over time.

7) Pair-programming. All code is written by having two
developers per machine.

8) Continuous integration. The developers integrate new
code into the system as often as possible. However, all
code must pass the testing otherwise it is discarded.

9) Collective ownership. Developers can change code
wherever necessary and the overall code is assessed.

10) On-site customer. A customer is in the team all the
time to answer questions so the team always works
according to what is needed.

11) 40-hour work week. The team works with a sus-
tainable pace defined as a 40 hour work week. The
requirement selected for each iteration should never
mean that the team needs to work overtime.

12) Open workspace. The team should be collocated and
fit in the same room. The layout of the room should
make cooperation and communication easy.

b) Scrum: Scrum is based on XP and is one of the
more common methodologies and is built on embracing change
and focus a lot on delivering value. In Scrum, the project
has a prioritized backlog of requirements and use iterative
development (called “sprints”) to get basic working software
for the customer to view as soon as possible. Scrum uses self-
organizing teams that get coordinated through daily meetings
called “scrums.” The manager is called a “Scrum Master” to
clarify that it is a facilitating role and not a directive one.

The Scrum methodology consists of three main phases:
Pre-sprint planning, sprint (iteration), and post-sprint meeting.
All work to be done is kept in a “release backlog” where
from requirements (user stories) are taken to the current “sprint
backlog.” The requirements are usually broken down from a
higher abstraction level when the sprint backlog is made. The
actual sprint (usually 2–4 weeks) is when the implementation
is performed. Here, the sprint backlog is frozen and the team
“sprints” to complete what was planned. The team members
choose tasks they want to work on themselves. “Scrum meet-
ings” also called “Daily scrums” are 15-minute meetings every
morning were the team members check status, report problems,
and keep the whole team focused on a common goal. The
post-meeting is done to evaluate the process and demonstrate
the current system. One important aspect of Scrum is to have
small working teams in order to maximize communication,
minimize overhead, and maximize the sharing of informal (or
tacit) knowledge. The team should also agree and be able to
define when something is considered “done” [14].

c) Lean and Kanban: The flexible project management
techniques and focus on customer value is not new. Within
lean manufacturing these aspects have existed a long time (for
more information about lean manufacturing see for example
[15]). Many companies combine the process of Scrum with
Kanban (Scrum-ban). It is important to note that Kanban is a
signal card to pull products through the process within Lean
production but has become a software development tool itself
[16]. Scrum is a more strict process and can be modified
by changing the WIP (work in progress) in each sprint into
being connected to the work-flow state to prevent too much
WIP. Kanban also allows adding items within each sprint.
Another aspect is to change the sprint backlog owned by the
team into a Kanban board with multiple teams with work-flow
state instead. The Kanban board is never reset after a sprint
and can be followed over time, and is also less dependent
on collocation. Scrum only allows three different roles of the
team, while Kanban does not have a limit. Therefore, larger
teams in larger organization with a diversity of specializations
often use Kanban or Scrum-ban when possible [17].

d) Crystal: We will not describe the Crystal method-
ologies in detail but, generally speaking, they are built on the
assumption that the main problem in software development is
poor communication. Crystal focuses on people, interaction,
community, skills, talents, and communication as main effects
on performance [18].

The twelve agile principles are a very high-level description
of a work environment. Agile software development is an
ambiguous concept with descriptions on various levels of
abstraction. Many of these are obviously connected to group
dynamics. The problem is that these psychological aspects are
not described in detail in the methods (processes). This means
that this dimension is left out for practitioners to figure our for
themselves to a large extent. In order to try to operationalize
agility and correlate the measurement to group maturity over
time, we enforced the twelve original XP practices (described
in Section II-A0a) on all the participating student teams and
then opted to use the Perceptive Agile Measurement developed
by So and Scholl [19] in order to measure this “agile” behavior
over time. All the items are included in Section III-E.

QuASoQ 2016 Workshop Preprints

4

B. Groups and Teams

A group can be defined as: “three or more members that
interact with each other to perform a number of tasks and
achieve a set of common goals” [20]. If the group is larger
all the members might not have a common goal, which means
that larger groups often consist of subgroups. Some studies
have shown that smaller groups are more productive than
larger groups with a threshold at around eight individuals [21].
In psychology, a “work-group” is a group that has a shared
view of the group goal and has developed a structure that
enables goal achievement. A team, on the other hand, is
an effective work-group, however, we will use the terms
somewhat interchangeably in this paper, since agile work-
groups are called “teams” no matter their actual effectiveness.
In social psychology, though, only 17% of all groups were
considered teams according to one study [22].

The group research in psychology received much attention
after the second world war and before the sixties. After
that, the focus in research was on the individual instead
of groups [22]. The start of the human factors research in
software engineering has also mostly focused on individuals
and their personalities and traits for 40 years without finding
any coherent results [23]. Therefore, we have reason to believe
that much of what happens in software engineering is set on
team-level, which means that “agility” is hard to obtain if we
do not understand the group dynamics of agile teams, or as
Wheelan and Hochberger [22] very adequately put it: “before
one jumps to fix something, one has to know what is broken.”

During so many years of research on groups in psychology,
there are, of course, a diversity of group development models
[24]. However, there seems to be a reoccurring patterns of what
happens to all types of groups when humans get together in
order to solve a task. The first researchers to aggregate models
into a general group development model were Tuckman and
Jensen [25] in the seventies. In the nineties Susan Wheelan
did a similar aggregation of existing models that resulted in
the Integrated Model of Group Development that we used
in this study. However, Tuckman and Jensen’s [25] model
with the phases; Forming, Storming, Norming, and Performing
correspond well to the stages suggest by Wheelan [22].

C. Wheelan’s Integrated Model of Group Development

The Integrated Model of Group Development (or IMGD)
describes four different stages that all groups go through
in their journey towards becoming a well-functioning high
performing team. These stages are illustrated in Figure 1 and
described next. The Group Development Questionnaire (the
GDQ), that is a measurement of how much energy the group
is spending on each development stage, is described afterward.

a) Stage 1 — Dependency and Inclusion: During the
first stage of group development (i.e. when the group is new)
the group members have more focus on safety and inclusion,
a dependency on the designated leader, and more of a wish
for order and structure, than in more mature stages. A group
at stage one can still get work done, but will focus more
on figuring out who the other people are. There is a lack
of structure and the group needs to become organized, being
able to do efficient work, and achieve the group goals. The
group members need to create a sense of belonging and lay

the foundation for how to interact within the group. At this first
stage, there is a lack of the feeling of belonging to a group,
but after this stage people start feeling safe enough to state
their ideas and contribute to how they think the group should
work in order to achieve its goals. If this does not happen
groups stagnate, which is often noticed when group members
stop doing work between meetings and even stop attending the
group meetings [22].

b) Stage 2 — Counter-Dependency and Fight: During
the second stage the group starts having conflict. These differ-
ences in opinion is a must in order to create clear roles based
on real competence and to make it possible to work together in
a constructive manner. The group members have to go through
this more turbulent stage in order to build trust. After feeling
safe and therefore daring to have these conflicts, a sense of
loyalty emerges, which is needed to create cohesion. Since we
do not have a clear picture of goals and roles in the beginning,
we need this emotional and hard work in order to get shared
perceptions of values, norms, and goals, which need to be set
on group-level. Since everybody needs to believe in the group
values and norms for them to fill their purpose, the rules of
the game need to be negotiated so that all members thoroughly
believe in them. The more shallow discussions about goals
probably present in the first stage, will now be more emotional
or include disagreements [22].

c) Stage 3 — Trust and Structure: During the third
stage the structure is getting into place and the roles are now
actually based on competence instead of status, power, or
safety concerns. The communication patterns are more open
and also more task-oriented. In this stage the role, organization,
and process negotiations are most often more mature and there
will be an evident clarification and consensus regarding the
group goals. The group members also spend time solidifying
positive relationships, and when the tasks are adjusted to
competence the likelihood of goal achievement is higher. At
this stage the leader’s roll goes from needing to have been more
directive to being more consultative. The communication struc-
ture is also more flexible (i.e. group members talk to whomever
they need). Along the group development the content of the
communication is also more and more task-oriented instead
of relation-oriented. Groups always need the relation-oriented
communication since we always need to do the maintenance
of discussing how we work together as a group. Therefore,
conflict will still occur but be over much faster since the group
has better conflict management techniques. Work satisfaction
and cooperation increase together with cohesion and trust. At
this stage the individual commitment to the group goal will
be higher (i.e. we care about what the group is doing on a
personal level). This means we will see a voluntary conformity
with the norms and helpful deviation from the group (like sub-
grouping) will be accepted if considered helpful for the group
as a whole [26].

d) Stage 4 — Work and Productivity: The forth stage
of group development is when the group does even better
with regards to the purpose of stage three. This means that
the group focuses on getting the task done well together as
well as maintaining group cohesion over a longer period of
time. It is important to realize that there is a large set of
variables that can and will disturb the group development.
Basically, all changes will have such an effect, e.g. change

QuASoQ 2016 Workshop Preprints

5

Stage 1 Stage 2 Stage 3 Stage 4

Dependency
& Inclusion

Counter-
Dependency

& Fight

Trust &
Structure

Work &
Productivity

Focus on relationships
and emotions

Focus on work
and productivity

80% work-oriented
20% relation-oriented

Fig. 1. The Group Development Stages [26]

of demands from the organization, losing staff, getting new
staff, and so on and so forth. The challenge in stage four
is therefore to try to maintain the effectiveness reached, and
the most effective groups do not discuss task-related issues a
hundred percent of the time, but actually, still spend around
twenty percent discussing how to work together, which is
key when maintaining high performance. The characteristics
of the decision-making in such teams are participatory and
the team encourages task-related conflicts, since they help
finding better solutions to problems faced. A person who
is or has been on such a team will recognize the intensity
of the work and the effectiveness together with a very high
interpersonal attraction between group members. People in
such high performing teams often look at their work with
excitement and joy and getting work done is easy and members
have the feeling of being a part of the absolute best team in
the world. Getting to stage four takes a lot of work both from
internal group members but the group also needs to be given
the right conditions from their surrounding ecosystem [26].

D. The Group Development Questionnaire (GDQ)

Wheelan [26] was not the first one who found these
characteristic stages of group development, but she contributed
with a tool to measure these different stages with four scales
put together in a questionnaire. Her tool has made it possible
to measure and therefore diagnose where a specific group is fo-
cusing its energy from a group developmental perspective. The
survey has a total of 60 items and provides a powerful tool for
research and interventions in teams. Scale four (GDQ4) is the
“work and productivity” and has been shown to correlate with
a set of effectiveness measures in different fields. Examples
are that groups that have high scores on GDQ4 finish projects
faster [27], students perform better on standardized test (SAT
scores) if the faculty team scores high on GDQ4 [28], [29],
and intensive care staff save more lives in surgery [30].

E. Technology under investigation

The group development stages have been well-known for
many years in social psychology [10]. Helping teams to
develop and mature in their group development have been

shown to increase productivity and effectiveness in a diversity
of fields (see Section II-D). Therefore, we want to see if
helping teams to mature from a group psychology perspective
also gets them to mature in their usage of the XP practices.

There are many group development models, but few have
been scientifically validated in the way the group development
questionnaire (GDQ) has [22]. Since correlations have been
found between the group score on the “work and produc-
tivity” scale of the GDQ and other external effectiveness
measurements, it would interesting to explore its effect on
agile software development teams in their adoption of agile
practices. Especially since agile methods have been shown to
increase software development project success [31].

Evidence-based interventions within group development
with the GDQ have been shown to increase the group maturity
in teacher teams [32], and to increase the velocity of group
development [33].

F. Relevance to practice

If group development training can be shown to increase the
agility of software engineering teams, such aspects would be
appropriate to explicitly integrate into the implementation of
“agility” in all organizations conducting software development.

III. EXPERIMENT PLANNING

A. Goals

The goal of this experiment was to see if training an agile
team in group developmental psychology would increase their
agility through more mature use of the agile practices.

B. Experimental units

In order to conduct an experiment the study was conducted
with 43 students in an agile software development course at the
University of São Paulo. Group developmental aspects apply to
all group-work and therefore working with students as research
subjects is a valid representation of software development
conducted by developers on all knowledge levels. However,
we would still be careful in generalizing a result to a larger

QuASoQ 2016 Workshop Preprints

6

population than that of developers in the phase of learning an
agile approach (i.e. individuals with little experience of agile
software development in practice). The course were offered
to 3rd year students, however, most students usually take the
course in the 4th or 5th (last) year of their software engineering
degree. The course is also open to graduate students who
are given the possibility to take the course twice during their
graduate education.

The student teams in this study comprised students en-
rolled in a project XP software development course called
“The Laboratory of XP” at the Institute of Mathematics and
Statistics at the University of São Paulo. The purpose of the
course is to introduce agile methods through the use of XP.
These methods included, at a minimum, the twelve practices
presented in Section II-A0a. Some other staff at the university
acted as customers and had to pitch their project ideas to the
students, who signed up for the most interesting one from their
point of view. All the teams included six to eight members
and a more experienced student acting as a an agile coach for
the team. The process was put together by the student teams
themselves and we allowed any type of additional practices
they selected as long as it was within the XP framework. As
an example, we enforced collocation of a minimum of eight
hours per week.

C. Experimental material

The experimental object was the agile software develop-
ment team. Group norms and cooperation are set on group
level and therefore the actual “team” is the relevant level of
analysis.

D. Tasks

The experimental tasks applied in this experiment was for
the teams (one team at a time) to listen and reflect on group
development theory and discuss its applicability in connection
to their own team.

E. Hypotheses, parameters, and variables

The construct used to measure agile practices and the
behavior connected to them, was the mature usage of nine
agile practices as defined by So and Scholl [19]:

Iterative Planning: (1) All members of the technical team actively partici-
pated during iteration planning meetings. (2) All technical team members took part
in defining the effort estimates for requirements of the current iteration. (3) When
effort estimates differed, the technical team members discussed their underlying
assumption. (4) All concerns from team members about reaching the iteration
goals were considered. (5) The effort estimates for the iteration scope items were
modified only by the technical team members. (6) Each developer signed up for
tasks on a completely voluntary basis. (7) The customer picked the priority of the
requirements in the iteration plan.

Iterative Development: (1) We implemented our code in short iterations. (2)
The team rather reduced the scope than delayed the deadline. (3) When the scope
could not be implemented due to constraints, the team held active discussions on
re-prioritization with the customer on what to finish within the iteration. (4) We
kept the iteration deadlines. (5) At the end of an iteration, we delivered a potentially
shippable product. (6) The software delivered at iteration end always met quality
requirements of production code. (7) Working software was the primary measure
for project progress.

Continuous Integration and Testing: (1) The team integrated continuously.
(2) Developers had the most recent version of code available. (3) Code was checked
in quickly to avoid code synchronization/integration hassles... (4) The implemented
code was written to pass the test case. (5) New code was written with unit tests
covering its main functionality. (6) Automated unit tests sufficiently covered all
critical parts of the production code. (7) For detecting bugs, test reports from
automated unit tests were systematically used to capture the bugs. (8) All unit
tests were run and passed when a task was finished and before checking in and
integrating. (9) There were enough unit tests and automated system tests to allow
developers to safely change any code.

Stand-Up Meetings: (1) Stand up meetings were extremely short (max. 15
minutes). (2) Stand up meetings were to the point, focusing only on what had
been done and needed to be done on that day. (3) All relevant technical issues
or organizational impediments came up in the stand up meetings. (4) Stand up
meetings provided the quickest way to notify other team members about problems.
(5) When people reported problems in the stand up meetings, team members
offered to help instantly.

Customer Access: (1) The customer was reachable. (2) The developers could
contact the customer directly or through a customer contact person without any
bureaucratic hurdles. (3) The developers had responses from the customer in a
timely manner. (4) The feedback from the customer was clear and clarified his
requirements or open issues to the developers.

Customer Acceptance Tests: (1) How often did you apply customer accep-
tance tests? (2) A requirement was not regarded as finished until its acceptance
tests (with the customer) had passed. (3) Customer acceptance tests were used as
the ultimate way to verify system functionality and customer requirements. (4) The
customer provided a comprehensive set of test criteria for customer acceptance. (5)
The customer focused primarily on customer acceptance tests to determine what
had been accomplished at the end of an iteration.

Retrospectives: (1) How often did you apply retrospectives? (2) All team
members actively participated in gathering lessons learned in the retrospectives.
(3) The retrospectives helped us become aware of what we did well in the
past iteration/s. (4) The retrospectives helped us become aware of what we
should improve in the upcoming iteration/s. (5) In the retrospectives (or shortly
afterwards), we systematically assigned all important points for improvement to
responsible individuals. (6) Our team followed up intensively on the progress of
each improvement point elaborated in a retrospective.

Collocation: (1) Developers were located majorly in... (2) All members of
the technical team (including QA engineers, db admins) were located in... (3)
Requirements engineers were located with developers in... (4) The project/release
manager worked with the developers in... (5) The customer was located with the
developers in...

The group maturity (or effectiveness) operationalization
was done through using Scale 4 of the GDQ [22]. All the
items in the GDQ scale cannot be shared here due to copyright,
however, we can include three example items:

• The group gets, gives, and uses feedback about its
effectiveness and productivity.

• The group acts on its decisions.

• This group encourages high performance and quality
work.

The group development measurement on Scale 4 was
assessed on a 5-point Likert scale (1 = low agreement to
the statement and 5 = high agreement). The agile items
were assesses on a 7-point Likert scale (1 = never and 7 =

QuASoQ 2016 Workshop Preprints

7

always). These scales were used for the simple reason that
these measurements were developed and validated using these
exact scales.

Both measurements have been validated using a factor
analysis [34] and a test for internal consistency (using the
Cronbach’s α [35]).

The formal research hypothesis for each scale is that
the mean values for the scale is different between the two
measurements, or H1 : µ1 6= µ2.

F. Design

We used a longitudinal research design in order to test dif-
ferences in group mean value scores on the two measurements
over time. The first measurement comprised seven teams and
43 student responses, and the second measurement comprised
the same seven teams with 40 responses, i.e. three student were
absent during the second measurement.

G. Procedure

The two measurement surveys were distributed to the
teams five weeks into their software development projects
(during their scheduled and collocated development sessions).
The reason was to let the students actually form teams and
have done some work before the first measurement. Three
of the participating seven teams were randomized into the
experimental group and the remaining four teams were used as
a control group. The randomization was done by first writing
the numbers “3” and “4” on paper slips and letting a person
not connected to the experiment draw one folded slip for the
research group (three groups were selected). The second step
was conducted by writing all team names on other paper slips
and letting the person draw three slips to be used for the
research group.

On week six, the three selected teams participated in a
1.5-hour group development training with a discussion on
the applicability to their own team. During the first hour
of the training, the first author of this paper presented The
Integrated Model of Group Development [10] and its four
group developmental stages. The idea is, briefly, that there are
predictable group developmental stages that all groups have
to go through in order to work effectively. If team-members
are aware of these there is a smaller probability of the team
getting stuck on group issues, which leads to quicker and
higher quality work [10]. Aspects covered were, for example,
goal-setting, role clarification, decision-making, and leadership
issues of groups in different development stages.

On week eleven, the second measurement was conducted
using the same procedure as in the first measurement.

H. Analysis procedure

The data was analyzed using a general linear model for
repeated measures (i.e. a standard repeated measures ANOVA).
Such a model assumes normality in data, but since we did not
find any significant result, we did not proceed to use non-
parametric tests (since these are more restrictive and would
therefore neither show any significance).

IV. RESULTS

A. Descriptive statistics

Since we aimed at affecting the agile practices score by
conducting group psychology training, we first looked at if we
managed to increase the group dynamics score. Since that was
not the case we already knew we did not succeed with the
intended plan of the experiment. However, we still looked for
differences in the agile practices measurement to see if they
differed anyways between the two measurements. The only
two significant differences we found between the first and
second measurements were that the scales “Retrospectives”
and “Customer Acceptance Tests.” Therefore, we show the
descriptive statistics for these scales as well (see Table I).

B. Data set preparation

A mean value was calculated based on the collected data
for each individual, and then for the team according the agile
practices as defined by So and Scholl [19]. The measured
agile practices were: Iteration planning, Iterative development,
Continuous integration and testing, Stand-up meetings, Cus-
tomer access, Customer acceptance tests, Retrospectives and
Collocation. The group development Scale 4 individual items
were also turned into a mean value for each individual and then
for the groups separately. Since we wanted to run the analysis
on group-level we only have three mean values in the research
group and four values in the control group (seven groups in
total).

C. Hypothesis testing

Since we have so few data points, we cannot assess the
population distribution based on our sample. However, other
studies have shown this kind of data to be normally distributed
[19], [22]. Also, since we did not find any significant results
based on parametric tests, neither would we for non-parametric
tests (since they are more restrictive). We began by testing the
group effectiveness score (GDQ4 mean values) for the first
and second measurements and can conclude that we did not
see a significant effect (see Table II).

We then, still, ran the same analysis for all the agile
practices and only found that the scales “Retrospectives” and
“Customer acceptance tests” were different between the two
measurements overall and not in connection to whether they
were in the research group or not (see Table III and Table IV).

We conclude that the group development effectiveness
measurement (GDQ Scale 4) was not different between the
research group and the control group (not in the first nor
the second measurement). The two agile practices “Retrospec-
tives” and “Customer acceptance tests” where both different
overall between the two measurements, but not depending on
if the teams were in the research group or the control group.

V. DISCUSSION

We did not find any of the expected results in this study.
Clearly, just having 1.5 hours of training and discussion is
not enough to help the group to develop, even if 1.5 hours of
a workweek of 8 hours (like the students in the course had)
would be equivalent to 7.5 hours of working full-time 40 hours
a week. When taking a closer look at when other experiments

QuASoQ 2016 Workshop Preprints

8

TABLE I. DESCRIPTIVE STATISTICS.

Research Group Mean Std. Deviation N
GDQ4 1st Measurement Yes 3.9226 .22378 3
GDQ4 2nd Measurement Yes 3.8579 .92728 3
GDQ4 1st Measurement No 3.9007 .19832 4
GDQ4 2nd Measurement No 4.0055 .33619 4

Retrospectives 1st Measurement Yes 3.4963 1.54921 3
Retrospectives 2nd Measurement Yes 5.8500 .42517 3
Retrospectives 1st Measurement No 4.9280 1.05903 4
Retrospectives 2nd Measurement No 5.9099 .54201 4

Cust. Accept. Tests 1st Measurement Yes 3.6319 .38193 3
Cust. Accept. Tests 2nd Measurement Yes 4.6400 .90598 3
Cust. Accept. Tests 1st Measurement No 4.3349 .93600 4
Cust. Accept. Tests 2nd Measurement No 4.8229 .91841 4

TABLE II. ANOVA FOR THE TWO REPEATED GDQ4 MEASUREMENTS.
Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source GDQ4
Type III Sum

of Squares df Mean Square F Sig.
GDQ4 Linear
GDQ4 *
research_group

Linear

Error(GDQ4) Linear

.001 1 .001 .010 .925 .002

.025 1 .025 .178 .691 .034

.694 5 .139

Measure: MEASURE_1Measure: MEASURE_1

Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source GDQ4
Partial Eta

Squared
GDQ4 Linear
GDQ4 *
research_group

Linear

Error(GDQ4) Linear

.002

.034

Measure: MEASURE_1Measure: MEASURE_1

Page 1

TABLE III. ANOVA FOR THE TWO REPEATED RETROSPECTIVES MEASUREMENTS.
Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source Retrospective
Type III Sum

of Squares df Mean Square F Sig.
Retrospective Linear
Retrospective *
research_group

Linear

Error
(Retrospective)

Linear

9.537 1 9.537 19.597 .007 .797

1.613 1 1.613 3.314 .128 .399

2.433 5 .487

Measure: MEASURE_1Measure: MEASURE_1

Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source Retrospective
Partial Eta

Squared
Retrospective Linear
Retrospective *
research_group

Linear

Error
(Retrospective)

Linear

.797

.399

Measure: MEASURE_1Measure: MEASURE_1

Page 1

TABLE IV. ANOVA FOR THE TWO REPEATED CUSTOMER ACCEPTANCE TESTS MEASUREMENTS.
Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source Cat
Type III Sum

of Squares df Mean Square F Sig.
Cat Linear
Cat *
research_group

Linear

Error(Cat) Linear

1.919 1 1.919 7.018 .045 .584

.232 1 .232 .848 .399 .145

1.367 5 .273

Measure: MEASURE_1Measure: MEASURE_1

Tests of Within-Subjects Contrasts

Measure: MEASURE_1Measure: MEASURE_1Measure: MEASURE_1

Source Cat
Partial Eta

Squared
Cat Linear
Cat *
research_group

Linear

Error(Cat) Linear

.584

.145

Measure: MEASURE_1Measure: MEASURE_1

Page 1

succeeded in significantly helping the groups to develop and
capture their increased maturity, it turns out they did a much
larger intervention then was applied in this study. Jacobsson
and Wramsten Wilmar [32], for example, gave the groups eight
different interventions of group development assessment and
enforced improvement points that the group had to work on
until the next workshop, plus the students were fully dedicated
to only one course. In hindsight, we probably would have
needed something similar in order to move the groups forward
in the research group. There is also, of course, the possibility
of software engineering teams’ agility not being as dependent
on group maturity as we might think.

A. Threats to validity

We believe the layout of the experiment has potential. Of
course, even if we would have found a significant difference,
we would still have to have been careful when generalizing
the results due to the very small sample size. Regarding
construct validity the first author was present during the data
collection and could answer any potential questions regarding
the questionnaire. However, since we did not want the control
group to get training of group development we provided all
participants with as little information as possible before the
first survey, since we did not want to introduce bias. The trade-

off is of course that the participants could have misinterpreted
the questions and failed to answer in connection to our
intended operationalization of constructs. Regarding learning
effects between measurement, the GDQ has been shown to
be stable for repeated measurements as such [22]. We have
no such studies for the agile practices, which means that we
might have seen a learning effect when students answer that
part of the survey.

In order to prevent hypothesis guessing, we only informed
the participant that the research was about looking at connec-
tions between group psychology and agile practices and not
more detail on how we expected them to be connected. The
internal validity is considered quite high in this experiment
since we used validated scales as defined and validated quan-
titatively by other researchers [19], [22]. However, inter-group
communication between the research groups and the control
groups is also a threat our experimental research design.

We draw no inference from this experiment. We do not
want to state that group development causes more mature use
of agile practices, nor the opposite.

QuASoQ 2016 Workshop Preprints

9

B. Lessons learned

The largest lesson learned from this experiment is evidently
to check the level of intervention effort needed to move
groups forward in their development before conducting this
kind of an experiment. We still do not known the effort
needed, but the span is more then one 1.5 hours workshop
with a second measurement two months later, and less than
six to eight workshops of 2–3 hours during a full year with
connected action plans and follow-up. By having more time
with the teams we could have focused even more concretely on,
for example, goal-setting, role clarification, decision-making,
functional sub-grouping, or leadership issues, like in [32].

VI. CONCLUSIONS AND FUTURE WORK

We obtained an insignificant result of this experiment.
We therefore have no conclusions to draw based on the
expected effects. However, we believe these concepts could
still be connected since agile software development is based
on teamwork to a large extent. We evidently need a larger
intervention effort and, of course there could also be more
confounding or mediating factors we have not thought of in
the context of agile software development teams.

We would like to redo this experiment with more resources
and be able to give the teams in the research group eight times
more workshops with connected action plans in order to see
if we can get a similar effect as has been shown with teacher
teams [32]. It would, of course, be advantageous to include
as many teams as possible and at multiple universities and
companies to increase the statistical power of the experiment.

REFERENCES

[1] H. Takeuchi and I. Nonaka, “The new new product development game,”
Harvard business review, vol. 64, no. 1, pp. 137–146, 1986.

[2] J. Sutherland, Scrum: The art of doing twice the work in half the time.
Random House Business, 2014.

[3] K. Schwaber and M. Beedle, Agile software development with scrum.
Upper Saddle River, NJ: Prentice Hall, 2002.

[4] G. Melnik and F. Maurer, “Direct verbal communication as a catalyst
of agile knowledge sharing,” in Agile Development Conference, 2004.
IEEE, 2004, pp. 21–31.

[5] A. Teh, E. Baniassad, D. Van Rooy, and C. Boughton, “Social psy-
chology and software teams: Establishing task-effective group norms,”
IEEE Software, vol. 29, no. 4, pp. 53–58, 2012.

[6] P. Lenberg, R. Feldt, and L.-G. Wallgren, “Human factors related
challenges in software engineering: An industrial perspective,” in Pro-
ceedings of the Eighth International Workshop on Cooperative and
Human Aspects of Software Engineering.

[7] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments
in software engineering,” in Guide to advanced empirical software
engineering. Springer, 2008, pp. 201–228.

[8] J. Iivari and N. Iivari, “The relationship between organizational culture
and the deployment of agile methods,” Information and Software
Technology, vol. 53, no. 5, pp. 509–520, 2011.

[9] C. Tolfo and R. Wazlawick, “The influence of organizational culture
on the adoption of extreme programming,” Journal of systems and
software, vol. 81, no. 11, pp. 1955–1967, 2008.

[10] S. Wheelan, Group processes: A developmental perspective, 2nd ed.
Boston: Allyn and Bacon, 2005.

[11] L. Gren, R. Torkar, and R. Feldt, “Group maturity and agility, are they
connected? A survey study,” in Proceedings of the 41st EUROMI-
CRO Conference on Software Engineering and Advanced Applications
(SEAA), 2015.

[12] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9, pp. 833–859, 2008.

[13] D. Cohen, M. Lindvall, and P. Costa, “An introduction to agile meth-
ods,” Advances in Computers, vol. 62, pp. 1–66, 2004.

[14] K. Schwaber, “Scrum development process,” in Business Object Design
and Implementation. Springer, 1997, pp. 117–134.

[15] W. Feld, Lean manufacturing: Tools, techniques, and how to use them.
Boca Raton, Fla.: St. Lucie Press, 2001.

[16] M. Poppendieck, “Lean software development,” in Companion to the
proceedings of the 29th International Conference on Software Engi-
neering. IEEE Computer Society, 2007, pp. 165–166.

[17] C. Ladas, “Scrumban,” Lean Software Engineering-Essays on the Con-
tinuous Delivery of High Quality Information Systems, 2008.

[18] A. Cockburn, Agile software development: The cooperative game,
2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2007.

[19] C. So and W. Scholl, “Perceptive agile measurement: New instruments
for quantitative studies in the pursuit of the social-psychological effect
of agile practices,” in Agile Processes in Software Engineering and
Extreme Programming. Springer, 2009, pp. 83–93.

[20] J. Keyton, Communicating in groups: Building relationships for group
effectiveness. New York: McGraw-Hill, 2002.

[21] S. Wheelan, “Group size, group development, and group productivity,”
Small Group Research, vol. 40, no. 2, pp. 247–262, 2009.

[22] S. Wheelan and J. Hochberger, “Validation studies of the group de-
velopment questionnaire,” Small Group Research, vol. 27, no. 1, pp.
143–170, 1996.

[23] S. Cruz, F. da Silva, and L. Capretz, “Forty years of research on
personality in software engineering: A mapping study,” Computers in
Human Behavior, vol. 46, pp. 94–113, 2015.

[24] S. Wheelan and R. Mckeage, “Developmental patterns in small and
large groups,” Small Group Research, vol. 24, no. 1, pp. 60–83, 1993.

[25] B. Tuckman and M. Jensen, “Stages of small-group development
revisited,” Group & Organization Management, vol. 2, no. 4, pp. 419–
427, 1977.

[26] S. Wheelan, Creating effective teams: A guide for members and leaders,
4th ed. Thousand Oaks: SAGE, 2013.

[27] S. Wheelan, D. Murphy, E. Tsumura, and S. F. Kline, “Member
perceptions of internal group dynamics and productivity,” Small Group
Research, vol. 29, no. 3, pp. 371–393, 1998.

[28] S. Wheelan and F. Tilin, “The relationship between faculty group
development and school productivity,” Small group research, vol. 30,
no. 1, pp. 59–81, 1999.

[29] S. Wheelan and J. Kesselring, “Link between faculty group: Develop-
ment and elementary student performance on standardized tests,” The
journal of educational research, vol. 98, no. 6, pp. 323–330, 2005.

[30] S. Wheelan, C. N. Burchill, and F. Tilin, “The link between teamwork
and patients’ outcomes in intensive care units,” American Journal of
Critical Care, vol. 12, no. 6, pp. 527–534, 2003.

[31] P. Serrador and J. K. Pinto, “Does agile work? – A quantitative analysis
of agile project success,” International Journal of Project Management,
vol. 33, no. 5, pp. 1040–1051, 2015.

[32] C. Jacobsson and M. Wramsten Wilmar, “Increasing teacher team
effectiveness by evidence based consulting,” in Proceedings of the 14th
European Congress of Work and Organizational Psychology (EAWOP),
May 13–16 2009.

[33] C. Jacobsson and O. Persson, “Group development, what’s the speed
limit? – Two cases of student groups,” in Proceedings of the 7th Nordic
Conference of Group and Social Psychology (GRASP), May 20–21
2010.

[34] L. Fabrigar and D. Wegener, Exploratory Factor Analysis, ser. Series
in understanding statistics. OUP USA, 2012.

[35] L. Cronbach, “Coefficient alpha and the internal structure of tests,”
Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

QuASoQ 2016 Workshop Preprints

10

Predicting Quality of Service (QoS) Parameters
using Extreme Learning Machines with Various

Kernel Methods
Lov Kumar

NIT Rourkela, India
lovkumar505@gmail.com

Santanu Kumar Rath
NIT Rourkela, India
skrath@nitrkl.ac.in

Ashish Sureka
ABB Corporate Research, India

ashish.sureka@in.abb.com

Abstract—Web services which are language and platform
independent self-contained web-based distributed application
components represented by their interfaces can have different
Quality of Service (QoS) characteristics such as performance,
reliability and scalability. One of the major objectives of a
web service provider and implementer is to be able to estimate
and improve the QoS parameters of their web service as its
clients application are dependent on the overall quality of
the service. We hypothesize that the QoS parameters have a
correlation with several source code metrics and hence can
be estimated by analyzing the source code. We investigate the
predictive power of 37 different software metrics (Chidamber
and Kemerer, Harry M. Sneed, Baski & Misra) to estimate
15 QoS attributes. We develop QoS prediction models using
Extreme Learning Machines (ELM) with various kernel methods.
Since the performance of the classifiers depends on the software
metrics that are used to build the prediction model, we also
examine two different feature selection techniques i.e., Principal
Component Analysis (PCA), and Rough Set Analysis (RSA) for
dimensionality reduction and removing irrelevant features. The
performance of QoS prediction models are compared using three
different types of performance parameters i.e., MAE, MMRE,
RMSE. Our experimental results demonstrate that the model
developed by extreme learning machine with RBF kernel achieves
better results as compared to the other models in terms of the
predictive accuracy.

Index Terms—Extreme Learning Machines, Predictive Mod-
eling, Quality of service (QoS) Parameters, Software Metrics,
Source Code Analysis, Web Service Definition Language (WSDL)

I. RESEARCH MOTIVATION AND AIM

Web services are distributed web application components
which can be implemented in different languages, deployed
on different client and server platforms, are represented by
interfaces and communicate using open protocols [1][2]. Web
service implementers and providers need to comply with com-
mon web service standards so that they can be language and
platform independent and can be discovered and used by other
applications [1][2]. Applications and business solutions using
web services (which integrate and combine several services)
expect high Quality of Service (QoS) such as performance,
scalability and reliability as their application is dependent
on the service. Measuring quality of service attributes and
characteristics of web services and understanding their rela-
tionship with source code metrics can help developers control

and estimate maintainability by analyzing the source code
[3][4][5][6]. The work presented in this paper is motivated by
the need to investigate the correlation between QoS attributes
such as response time, availability, throughput, reliability,
modularity, testability and interoperability and source code
metrics such as classic object oriented metrics (Chidamber and
Kemerer) as well as other well-known metrics such as Baski &
Misra and Harry M. Sneed metrics. Specifically, our research
aim is to study the correlation between 15 web service quality
attributes and 37 source code metrics and then build machine
learning based predictive models for estimating the quality of
a given service based on the computed source code metrics.
Our aim is to conduct experiments on a real-world dataset and
also examine the extent to which feature selection techniques
such as Principal Component Analysis (PCA) and Rough Set
Analysis (RSA) can be used for dimensionality reduction and
filter irrelevant features.

II. RELATED WORK, RESEARCH CONTRIBUTIONS AND
RESEARCH FRAMEWORK

Related Work: Coscia et al. investigate the potential of obtain-
ing more maintainable services by exploiting Object-Oriented
metrics (OO) values from the source code implementing
services [3]. Their approach proposed the use of OO metrics as
early indicators to guide software developers towards obtaining
more maintainable services [3]. Coscia and Crasso et al.
present a statistical correlation analysis demonstrating that
classic software engineering metrics (such as WMC, CBO,
RFC, CAM, TPC, APC and LCOM) can be used to predict the
most relevant quality attributes of WSDL documents [4]. Ma-
teos et al. found that there is a high correlation between well-
known object-oriented metrics taken in the code implementing
services and the occurrences of anti-patterns in their WSDLs
[5]. Kumar et al. use different object-oriented software metrics
and Support Vector Machines with different type of kernels for
predicting maintainability of services [6]. Their experimental
results demonstrate that maintainability of SOC paradigm can
be predicted by application of 11 object-oriented metrics [6].
Olatunji et al. develop an extreme learning machine (ELM)
maintainability prediction model for objectoriented software
systems [7].

QuASoQ 2016 Workshop Preprints

11

Research Contributions: The main research contribution
of the study presented in this paper is the application of
37 source code metrics (Chidamber and Kemerer, Harry
M. Sneed, Baski & Misra) for predicting 15 Quality of
Service (QoS) or maintainability parameters for web services
by employing Extreme Learning Machines (ELM) using
various kernel methods and two feature selection techniques
(Principal Component Analysis and Rough Set Analysis).
To the best of our knowledge, the research presented in this
paper is the first such in-depth empirical study on publicly
available well-known dataset.

Research Framework: Figure 1 displays our research frame-
work and methodology. The framework consists of multiple
steps. As shown in Figure 1, we first compute the QoS
parameters for the web services in our dataset. We compute 37
source code metrics belonging to 3 different metrics suite. We
apply two different feature selection methodology (Rough Set
Analysis and Principal Component Analysis) for the purpose
of dimensionality reduction and removing irrelevant features.
We apply Extreme Learning Machines (ELM) with three
different kernel functions (linear, polynomial and RBF). We
create 6 sets of metrics suite, 2 feature selection techniques
and 3 kernel functions and evaluate the performance of all
the combinations resulting in a comprehensive and in-depth
experimental evaluation. Finally, we evaluate the performance
of various models using wide used estimator evaluation met-
rics and conduct statistical tests to identify best learning
algorithms.

III. EXPERIMENTAL DATASET

We use a subset of QWS Dataset1 for our experimental anal-
ysis. The QWS Dataset provided by Al-Masri et al. includes a
sets of 2507 Web services and their 9 QWS parameters (such
as response time, availability, throughput, compliance and
latency) which are measured using Web service benchmark

1http://www.uoguelph.ca/∼qmahmoud/qws/

tools [8][9]. Al-Masri et al. collect the Web services using their
Web Service Crawler Engine (WSCE) and majority of the Web
services are obtained from public sources. We observe that 524
out of 2507 Web Service have their corresponding WSDL file.
Baski et al. present a suite of metrics to evaluate the quality of
the XML web service in terms of its maintainability [10]. We
apply the Baski and Misra metrics suite tool on the 524 WSDL
files and obtained successful parsing for 200 files. We use the
metrics proposed by Baski et al. as predictor variables. We
could not include 324 WSDL files as part of our experimental
dataset as we were unable to parse them for computing Baski
and Misra metrics. Hence, we finally use 200 Web services
for the experiments presented in this paper. Redistribution
of the data on the web is not permitted according to the
dataset usage guidelines and hence we provide a list2 of the
200 Web services used in our study so that our research can
be reproduced and replicated for benchmark or comparison.
Figure 2 shows a scatter plot for the number of Java files
for the 200 WSDL files in our dataset. The X-axis represents
the WSDL File ID and the Y-axis represent the number of
Java files. Figure 2 shows that there are several web services
implemented using more than 100 Java files.

WSDL ID

0 20 40 60 80 100 120 140 160 180 200

N
o

.
o

f
C

la
s

s
e

s

0

100

200

300

400

500

600

700

Fig. 2. Scatter Plot for the Number of Java Files for the 200 WSDL Files in
Experimental Dataset

2http://bit.ly/1S8020w

Fig. 1. Research Methodology and Framework

QuASoQ 2016 Workshop Preprints

12

IV. DEPENDENT VARIABLES QOS PARAMETERS

Table I shows the descriptive statistics of 9 QoS param-
eters provided by the creators of QWS dataset. The owners
of QWS dataset provide QoS parameter values for all the
2507 web services. However, Table I displays the descriptive
statistics computed by us for the 200 web services used in
our experimental dataset. Table I reveals substantial variation
or dispersion in the parameter values across 200 web services
which shows variability in the quality across services. Sneed
et al. describes a tool supported method for measuring web
service interfaces [11]. The extended version of their tool can
be used to compute maintainability, modularity, reusability,
testability, interoperability and conformity of web services. We
calculate these values for the 200 web services in our dataset
and assign them as dependent variables. Table II displays
the descriptive statistics for the QoS parameters calculated
using Sneed’s Tool. Hence, we have a total of 15 dependent
variables.

TABLE I
DESCRIPTIVE STATISTICS OF QOS PARAMETERS PROVIDED BY QWS

DATASET

Parameter Min Max Mean Median Std Dev Skewness Kurtosis
Response Time 57.00 1664.62 325.11 252.20 289.33 3.15 13.12
Availability 13.00 100.00 86.65 89.00 12.57 -2.63 12.06
Throughput 0.20 36.90 7.04 4.00 6.94 1.57 5.79
Successability 14.00 100.00 90.19 96.00 13.61 -2.57 10.81
Reliability 33.00 83.00 66.64 73.00 9.61 -0.60 2.96
Compliance 67.00 100.00 92.19 100.00 9.78 -0.90 2.61
Best Practices 57.00 93.00 78.81 82.00 7.70 -0.68 2.67
Latency 0.74 1337.00 42.81 12.20 106.23 9.56 112.68
Documentation 1.00 96.00 29.37 32.00 26.97 1.06 3.31

TABLE II
DESCRIPTIVE STATISTICS OF QOS PARAMETERS CALCULATED USING

SNEEDS TOOL

Parameter Min Max Mean Median Std Dev Skewness Kurtosis
Maintainability 0.00 77.67 31.07 28.17 24.29 0.37 2.02
Modularity 0.10 0.81 0.22 0.17 0.13 2.02 7.10
Reusability 0.10 0.90 0.38 0.35 0.17 0.32 2.94
Testability 0.10 0.66 0.19 0.16 0.09 2.58 10.71
Interoperability 0.14 0.90 0.51 0.41 0.23 0.65 2.01
Conformity 0.43 0.98 0.79 0.87 0.15 -0.47 1.57

V. PREDICTOR VARIABLES - SOURCE CODE METRICS

Chidamber and Kemerer Metrics: We compute several
size and structure software metrics from the bytecode of
the compiled Java files in our experimental dataset using
CKJM extended3 [12][13]. CKJM extended is an extended
version of tool for calculating Chidamber and Kemerer Java
Metrics and many other metrics such as weighted methods per
class, coupling between object classes, lines of code, measure
of functional abstraction, average method complexity and
McCabe’s Cyclomatic Complexity. We use the WSDL2Java
Axis2 code generator4 which comes built-in with an Eclipse
plug-in to generate Java class files from the 200 WSDL files
in our experimental dataset. We then compile the Java files

3http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/
4https://axis.apache.org/axis2/java/core/tools/eclipse/wsdl2java-plugin.html

to generate the bytecode for computing the size and structure
software metrics using the CKJM extended tool. The minimum
number of Java files are 7 and the maximum is 605. The mean,
median, standard deviation, skewness and kurtosis is 52.39,
45.50, 59.06, 5.43 and 43.94 respectively. Table III displays
the descriptive statistics for 19 size and structure software
metrics computed using CKJM Extended Tool for the 200 Web
services in our dataset. The mean value of AMC as 61.94
means that the mean of the average method size calculated
in terms of the number of Java binary codes in the method
for each class is 62. We compute the standard deviation for
all the 19 metrics to quantify the amount of dispersion and
spread in the values. We observe (refer to Table III) that few
metrics such as DIT, NOC, MFA, CAM, IC and CBM have
low standard deviation which means that the data points are
close to the mean. However, we observe that LCOM, LCO,
AMC and CC have relatively high values of standard deviation
which means that the data points are dispersed over a wider
range of values.

TABLE III
DESCRIPTIVE STATISTICS OF OBJECT-ORIENTED METRICS

Metrics Min Max Mean Median Std Dev Skewness Kurtosis
WMC 9.48 13.57 11.01 10.96 0.48 0.81 6.54
DIT 0.87 1.02 0.98 0.98 0.02 -2.07 9.72
NOC 0.00 0.13 0.01 0.01 0.02 2.64 12.55
CBO 4.10 12.55 10.70 11.01 1.33 -1.15 5.18
RFC 12.78 44.55 40.35 41.48 4.13 -3.13 15.15
LCOM 74.03 405.49 120.94 108.67 45.70 2.99 13.96
Ca 0.64 3.92 2.91 2.99 0.62 -0.50 2.72
Ce 3.49 9.50 8.24 8.37 0.90 -1.30 6.01
NPM 4.88 9.27 6.55 6.47 0.48 1.07 7.90
LCOM3 1.18 1.50 1.32 1.31 0.06 0.27 2.75
LCO 76.14 493.64 399.18 411.50 54.03 -2.61 11.71
DAM 0.21 0.45 0.37 0.37 0.04 -0.45 4.53
MOA 0.02 2.28 0.60 0.53 0.28 2.00 11.03
MFA 0.00 0.02 0.00 0.00 0.00 1.92 8.43
CAM 0.39 0.43 0.40 0.40 0.01 0.22 4.54
IC 0.00 0.05 0.01 0.01 0.01 0.79 3.68
CBM 0.00 0.05 0.01 0.01 0.01 0.79 3.68
AMC 7.68 82.86 61.94 64.37 10.75 -1.69 6.97
CC 18.17 71.39 42.77 43.74 9.58 -0.29 3.67

TABLE IV
DESCRIPTIVE STATISTICS OF HARRY M. SNEED’S METRICS SUITE

Metrics Min Max Mean Median Std Dev Skewness Kurtosis
Data Complexity 0.10 0.81 0.28 0.27 0.17 0.60 2.59
Relation Complexity 0.10 0.90 0.87 0.90 0.07 -7.72 83.58
Format Complexity 0.14 0.72 0.60 0.64 0.09 -1.05 5.24
Structure Complexity 0.15 0.90 0.61 0.63 0.17 -0.13 2.63
Data Flow Complexity 0.10 0.90 0.87 0.90 0.10 -5.64 39.14
Language Complexity 0.16 0.88 0.61 0.56 0.21 0.03 1.78
Object Point 42.00 4581.00 299.32 200.00 483.31 5.67 41.67
Data Point 29.00 3124.00 222.75 152.00 347.48 5.16 34.85
Function Point 6.00 776.00 53.73 32.00 94.21 5.36 35.33
Major Rule Violation 2.00 109.00 26.39 10.00 26.13 0.62 1.97
Medium Rule Violation 2.00 16.00 5.02 5.00 1.94 0.56 6.71
Minor Rule Violation 2.00 586.00 49.51 35.50 63.14 4.26 30.60

Harry M. Sneed Metrics: Sneed’s tool implements metrics
for quantity, quality and complexity of web service interfaces.
The values of all the metrics are statically computed from a
service interface in WSDL as the suite of metrics is based on
the WSDL schema element occurrences [11]. We compute
six interface complexity metrics for all the 200 web services
in our dataset. The six interface complexity metrics are
computed between a scale of 0.0 to 1.0. A value between 0.0

QuASoQ 2016 Workshop Preprints

13

TABLE V
DESCRIPTIVE STATISTICS OF BASKI AND MISRA METRICS SUITE

Metrics Min Max Mean Median Std Dev Skewness Kurtosis
OPS 0.00 108.00 7.76 5.00 13.74 5.41 35.37
DW 0.00 2052.00 114.63 62.00 216.46 6.56 53.80
MDC 0.00 17.00 4.40 5.00 2.62 1.97 8.87
DMR 0.00 1.00 0.53 0.50 0.22 0.50 3.32
ME 0.00 3.80 1.73 2.12 0.73 -0.43 3.58
MRS 0.00 72.00 3.65 2.60 6.25 7.99 79.12

and 0.4 represents low complexity and a value between 0.4
and 0.6 indicates average complexity. A value of more than
0.6 falls in the range of high complexity wherein any value
above 0.8 reveals that there are major issues with the code
design [4][11]. Table IV shows the minimum, maximum,
mean, median and standard deviation of the size complexity
values for all the web services on our dataset. In addition to
6 interface complexity metrics, we measure 6 more metrics
using the extended version of the tool provided to us by
the author himself: object point, data point, function point,
major, medium and minor rule violations. Table IV displays
the descriptive statistics for the 12 metrics for all the web
services in our dataset.

Baski and Misra Metrics: We compute 6 metrics proposed
by Baski and Misra [10]. Their metrics are based on the
analysis of the structure of the exchanged messages described
in WSDL which becomes the basis for measuring the data
complexity. Their metric suitbe is based on WSDL and XSD
schema elements occurrences. Table V reveals the descriptive
statistics of the 6 metrics: Data Weight of a WSDL (DW), Dis-
tinct Message Ratio (DMR), Distinct Message Count (DMC),
Message Entropy (ME), Message Repetition Scale (MRS) and
Operations Per Service (OPS).

VI. CODE METRICS - CORRELATION ANALYSIS

We compute the association between 37 metrics consisting
of dependent and independent variables using the Pearson’s
correlations coefficient (r). The coefficient of correlation r
measures the strength and direction of the linear relationship
between two variables. Figure 3 displays our experimental
results on correlation analysis between the 37 metrics. In
Figure 3, a Black circle represents an r value between 0.7
and 1.0 indicating a strong positive linear relationship. A
white circle r rvalue between 0.3 and 0.7 indicate a weak
positive linear relationship. A black square r represents a
value between −1 and −0.7 indicating a strong negative linear
relationship. A white square r represents a value between
−0.7 and −0.3 indicating a weak negative linear relationship.
A blank circle represents no linear relationships between the
two variables. For example, based on Figure 3, we infer that
there is a strong positive linear relationship between OPS
and four other variables MRS, OP, DP and FP. On the other
hand, we observe a weak linear relationship between ILC and
IDC as well as ISC and IDC. Figure 3 reveals association
between different suite of metrics and not just associations
between metrics within the same suite. For example, DMR
is part of Baski and Misra metrics suite. DMR has a strong
negative correlation with ISC (Structure Complexity), OP
(Object Point), DP (Data Point), FP (Function Point) and
MERV (Medium Rule Violation) which is part of Harry M.
Sneed metrics suite.

VII. FEATURE EXTRACTION AND SELECTION USING PCA
AND RSA

We investigate the application of Principal Component
Analysis (PCA) and Rough Set Analysis (RSA) as a data pre-
processing step for feature extraction and selection [14]. Our

O
PS

DW

M
DC

DM
R

M
E

M
RS

ID
C

IR
C

IF
C

IS
C
ID

FC
IL

C O
P DP FP

M
RV

M
eRV

M
iR

V

W
M

C
DIT

NO
C
CBO

RFC

LCO
M Ca Ce

NPM

LCO
M

3
LCO

DAM
M

O
A
M

FA
CAM IC

CBM
AM

C CC

OPS
DW

MDC
DMR

ME
MRS
IDC
IRC
IFC
ISC

IDFC
ILC
OP
DP
FP

MRV
MeRV
MiRV
WMC

DIT
NOC
CBO
RFC

LCOM
Ca
Ce

NPM
LCOM3

LCO
DAM
MOA
MFA
CAM

IC
CBM
AMC

CC

Fig. 3. Pearson’s Correlation Coefficient between 37 Metrics

QuASoQ 2016 Workshop Preprints

14

objective behind using PCA and RSA is to identify features
which are relevant in-terms of high predictive power and
impact on the dependent variable and filter irrelevant features
which have little or no impact on the classifier accuracy [14].
We apply PCA and varimax rotation method on all source
code metrics. The experimental results of PCA analysis is
shown in Table VI. Table VI reveals the relationship between
the original source code metrics and the domain metrics. For
each PC (Principal Components), we provide the eigenvalue,
variance percent, cumulative percent and source code metrics
interpretation (refer to Table VI). In PCA the order of the
eigenvalues from highest to lowest indicates the principal
components in the order of significance. Among all Principal
Components, we select only those which have Eigen value
greater than 1. Our analysis reveals that 9 PCs have Eigen
value greater than 1 (refer to Table VI). Table VI shows the
mapping of each component to the most important metric for
that component. Table VII shows the optimal subset of features
for every dependent variable derived from the original set of
37 source code metrics based features after applying RSA. We
apply the RSA procedure 15 times (one for each dependent
variable). Table VII reveals that it is possible to reduce the
number of features substantially and several features from the
original set are found to be uncorrelated.

TABLE VI
FEATURE EXTRACTION USING PRINCIPAL COMPONENT ANALYSIS -

DESCRIPTIVE STATISTICS

PC Eigenvalue % variance Cumulative % Metrics Interpretation
PC1 6.4 17.3 17.3 CBO, RFC, Ca, Ce, LCOM3, LCO, DAM, CAM
PC2 5.8 15.76 33.06 OPS, MRS, IRC, IDFC, OP, DP, FP
PC3 3.67 9.94 43.00 DW, MDC, MeRV, MiRV, CC, ME
PC4 3.39 9.16 52.17 DMR, IDC,ISC, ILC
PC5 3.34 9.03 61.2 IC, CBM, MOA
PC6 2.5 6.77 67.98 IFC, DIT, NOC, MFA
PC7 2.23 6.02 74.00 WMC, NPM
PC8 2.14 5.79 79.79 MRV, AMC
PC9 1.36 3.7 83.5 LCOM

TABLE VII
SOURCE CODE METRICS (FEATURE) SELECTION OUTPUT USING ROUGH

SET ANALYSIS (RSA)

QoS Selected Metrics
Response Time DMR, SC, LC, WMC, Ca, LCOM3, MFA, CAM, IC, CC
Availability FC, SC, LC, MeRV, MiRV, WMC, Ca, LCOM3, MFA, CAM, IC, CC
Throughput ME, FC, SC, LC, MRV, MeRV, MiRV, Ce, MOA, MFA, CAM, CBM, CC
Successability ME, FC, SC, DFC, LC, MRV, WMC, LCOM3, LCO, DAM, MOA, CAM
Reliability FC, SC, DFC, LC, WMC, LCOM3, LCO, MOA, MFA, CAM, CBM
Compliance ME, FC, SC, DFC, LC, MRV, WMC, MiRV, Ca, CC, DAM, MOA, CAM, NPM
Best Practices ME, FC, SC, DFC, LC, MRV, MiRV, WMC, Ca, NPM, MOA, MFA, CAM, CC
Latency DMR, ME, DC, FC, DFC, LC, MRV, NOC, NPM, LCO, MOA, CAM, IC
Documentation ME, FC, SC, DFC, LC, MRV, MeRV, WMC, Ca, NPM, CAM, IC, CC
Maintainability DP, Ce, LCOM3, MOA, MFA, CAM, CBM
Modularity DMR, ME, SC, DFC, LC, DP, MRV, MiRV, WMC, Ca, MOA, IC, AMC
Reusability MDC, DMR, FC, SC, DFC, LC, LCOM, LCOM3
Testability ME, FC, SC, LC, MiRV, DIT, NOC, CC, RFC
Interoperability SC, LC, MeRV, MiRV, WMC, DIT, CBO, MFA, CC
Conformity ME, FC, DFC, LC, MRV, WMC, Ca, CAM

VIII. APPLICATION OF EXTREME LEARNING MACHINES
(ELMS)

Huan et al. mention that Extreme Learning Machines
(ELMs) have shown to outperform computational intelligence
techniques such as Artificial Neural Networks (ANNs) and

Support Vector Machines (SVMs) in-terms of learning speed
and computational scalability [15]. ELM has demonstrated
good potential to resolving regression and classification prob-
lems [15] and our objective is to investigate if ELMs can
be successfully applied in the domain of web service QoS
prediction using source code metrics. Selection of an appro-
priate kernel function depending on the application domain
and dataset is an important and core issue [16].

Ding et al. mention that there is a correlation between
the generalization performance and learning performance with
the kernel function [16] as in the case of traditional neural
networks [16]. Hence, we investigate the performance of the
ELM based classifier using three different kernel functions:
linear, polynomial and RBF. ELMs can be used with different
kernel functions and one can create hybrid kernel functions
also. The most basic, simplest and fastest is the linear ker-
nel function which is used as a baseline for comparison
with more complicated kernel functions such as polynomial
and RBF. Table VIII shows the performance of the ELM
based classifier with linear kernel function. Table IX shows
the performance of the ELM based predictive model with
second degree polynomial kernel. The polynomial kernel is
more sophisticated than the linear kernel and uses non-linear
equations instead of the linear equations for the purpose of
regression and classification and is expected to result in better
accuracy in comparison to the classifier with linear kernel. The
Radial Basis Function kernel (RBF or Gaussian) is a popular
kernel function and widely used in Support Vector Machine
(SVM) learning algorithm. We use linear kernel to investigate
if the data is linearly separable but also use polynomial and
RBF kernel to examine if our data is not linearly separable
(computing a non-linear decision boundary). We employ four
different performance metrics (MAE, MMRE, RMSE and r-
value) to study the accuracy of the classifiers. The Mean
Absolute Error (MAE) measures the difference between the
predicted or forecasted value and the actual values (average
of the absolute errors). Table VIII and IX reveals that the
forecast for several predictive model is very accurate as the
MAE value is less than 0.05. For example, the MAE value
for HMS, AM and PCA metrics for predicting Conformity is
0.03. Table VIII and IX reveals that in general the predictive
accuracy for response time, latency, modularity and conformity
is better than the predictive accuracy of other QoS parameters.

Kitchenham et al. mention that Mean Magnitude of Relative
Error (MMRE) is a widely used assessment criterion for
evaluating the predictive accuracy and overall performance
of competing software prediction models and particularly
the software estimation models [17]. MMRE computes the
difference between actual and predicted value relative to the
actual value. Table X shows that the MMRE values for ELM
with RBF kernel is between 0.30 to 0.35 for response time,
availability and successability and indicates good estimation
ability of the classifier. Table VIII and Table IX reveals
that the MMRE values for conformity QoS parameter are
as low as 0.05, 0.06, 0.10 and 0.11. Root Mean Square
Error (RMSE) or Root Mean square Deviation root-mean-

QuASoQ 2016 Workshop Preprints

15

TABLE VIII
PERFORMANCE MATRIX FOR ELM WITH LINEAR KERNEL

Resp
on

se
Tim

e

Ava
ila

bil
ity

Thr
ou

gh
pu

t

Su
cc

ess
ab

ilit
y

Reli
ab

ilit
y

Com
pli

an
ce

Best
Pra

cti
ce

s

Late
nc

y

Doc
um

en
tat

ion

M
ain

tai
na

bil
ity

M
od

ula
rit

y

Reu
sa

bil
ity

Te
sta

bil
ity

In
ter

op
er

ab
ilit

y

Con
for

mity

MAE
BMS 0.11 0.19 0.18 0.21 0.25 0.28 0.19 0.11 0.23 0.20 0.11 0.16 0.12 0.16 0.18
HMS 0.10 0.16 0.18 0.19 0.25 0.27 0.19 0.11 0.22 0.15 0.08 0.15 0.07 0.14 0.06
OOM 0.09 0.14 0.18 0.17 0.25 0.25 0.18 0.11 0.22 0.12 0.15 0.15 0.14 0.22 0.18
AM 0.10 0.15 0.18 0.18 0.26 0.27 0.20 0.11 0.21 0.11 0.07 0.13 0.06 0.11 0.06
PCA 0.10 0.16 0.19 0.18 0.26 0.26 0.21 0.12 0.21 0.16 0.09 0.14 0.10 0.14 0.09
RSA 0.11 0.17 0.18 0.20 0.25 0.26 0.19 0.11 0.23 0.27 0.16 0.17 0.15 0.25 0.26

MMRE
BMS 0.37 0.35 0.73 0.38 0.66 0.61 0.37 0.55 0.90 0.76 0.41 0.61 0.46 0.35 0.28
HMS 0.36 0.33 0.73 0.36 0.69 0.61 0.39 0.56 0.93 0.60 0.29 0.60 0.26 0.31 0.11
OOM 0.34 0.32 0.74 0.35 0.71 0.61 0.37 0.55 0.89 0.47 0.54 0.57 0.55 0.50 0.33
AM 0.36 0.34 0.71 0.37 0.71 0.64 0.47 0.54 0.90 0.42 0.22 0.46 0.20 0.25 0.10
PCA 0.34 0.34 0.74 0.36 0.69 0.59 0.49 0.60 0.88 0.60 0.30 0.59 0.37 0.33 0.16
RSA 0.36 0.34 0.71 0.37 0.69 0.57 0.36 0.54 0.88 1.09 0.60 0.67 0.54 0.52 0.44

RMSE
BMS 0.16 0.26 0.22 0.28 0.29 0.33 0.24 0.15 0.29 0.26 0.17 0.22 0.17 0.22 0.22
HMS 0.15 0.22 0.22 0.24 0.29 0.31 0.23 0.15 0.28 0.21 0.12 0.19 0.11 0.18 0.08
OOM 0.15 0.21 0.22 0.23 0.29 0.30 0.22 0.14 0.28 0.16 0.22 0.19 0.21 0.28 0.23
AM 0.15 0.22 0.22 0.24 0.29 0.32 0.24 0.14 0.27 0.14 0.11 0.16 0.10 0.15 0.08
PCA 0.15 0.22 0.22 0.25 0.29 0.31 0.25 0.16 0.27 0.21 0.13 0.20 0.14 0.19 0.13
RSA 0.17 0.26 0.22 0.29 0.30 0.31 0.23 0.14 0.29 0.34 0.22 0.23 0.21 0.31 0.32

r-value
BMS 0.34 0.30 0.30 0.45 0.50 0.49 0.47 0.45 0.41 0.84 0.81 0.50 0.90 0.88 0.79
HMS 0.35 0.33 0.39 0.38 0.21 0.28 0.62 0.21 0.23 0.88 0.90 0.83 0.94 0.88 0.98
OOM 0.66 0.62 0.57 0.27 0.65 0.48 0.64 0.48 0.33 0.94 0.74 0.78 0.51 0.67 0.77
AM 0.32 0.35 0.37 0.26 0.34 0.30 0.34 0.58 0.27 0.94 0.98 0.90 0.93 0.92 0.99
PCA 0.40 0.32 0.37 0.39 0.41 0.40 0.29 0.36 0.37 0.87 0.94 0.79 0.86 0.90 0.99
RSA 0.29 0.77 0.49 0.45 0.37 0.48 0.55 0.31 0.43 0.11 0.36 0.48 0.70 0.77 0.43

TABLE IX
PERFORMANCE MATRIX FOR ELM WITH POLYNOMIAL KERNEL

Resp
on

se
Tim

e

Ava
ila

bil
ity

Thr
ou

gh
pu

t

Su
cc

ess
ab

ilit
y

Reli
ab

ilit
y

Com
pli

an
ce

Best
Pra

cti
ce

s

Late
nc

y

Doc
um

en
tat

ion

M
ain

tai
na

bil
ity

M
od

ula
rit

y

Reu
sa

bil
ity

Te
sta

bil
ity

In
ter

op
er

ab
ilit

y

Con
for

mity

BMS 0.10 0.14 0.18 0.17 0.24 0.26 0.19 0.11 0.23 0.17 0.11 0.16 0.11 0.15 0.12
HMS 0.11 0.15 0.19 0.17 0.26 0.28 0.19 0.11 0.23 0.12 0.05 0.11 0.04 0.10 0.03
OOM 0.12 0.15 0.21 0.18 0.27 0.28 0.19 0.11 0.23 0.12 0.13 0.14 0.15 0.18 0.12
AM 0.13 0.20 0.20 0.23 0.28 0.33 0.23 0.13 0.28 0.10 0.06 0.12 0.05 0.11 0.03
PCA 0.11 0.15 0.20 0.18 0.24 0.26 0.19 0.12 0.23 0.10 0.06 0.13 0.07 0.11 0.03
RSA 0.10 0.14 0.18 0.16 0.24 0.26 0.18 0.11 0.22 0.25 0.14 0.16 0.14 0.23 0.23

MMRE
BMS 0.36 0.32 0.75 0.35 0.68 0.62 0.39 0.58 0.94 0.71 0.41 0.67 0.44 0.36 0.20
HMS 0.38 0.33 0.76 0.35 0.71 0.64 0.40 0.57 0.93 0.52 0.19 0.40 0.18 0.19 0.05
OOM 0.42 0.34 0.81 0.37 0.77 0.64 0.37 0.56 0.94 0.44 0.48 0.49 0.57 0.41 0.22
AM 0.48 0.41 0.82 0.46 0.73 0.70 0.54 0.67 1.18 0.42 0.25 0.41 0.18 0.21 0.05
PCA 0.36 0.35 0.80 0.37 0.69 0.59 0.47 0.60 0.93 0.38 0.24 0.50 0.28 0.23 0.06
RSA 0.36 0.31 0.74 0.33 0.68 0.59 0.36 0.57 0.91 1.04 0.52 0.67 0.53 0.51 0.41

RMSE
BMS 0.15 0.20 0.22 0.23 0.28 0.31 0.22 0.15 0.29 0.23 0.16 0.22 0.17 0.20 0.16
HMS 0.16 0.21 0.23 0.23 0.30 0.33 0.23 0.16 0.29 0.18 0.08 0.17 0.07 0.13 0.04
OOM 0.18 0.22 0.26 0.25 0.32 0.34 0.23 0.15 0.30 0.15 0.20 0.19 0.21 0.25 0.18
AM 0.19 0.27 0.25 0.32 0.33 0.41 0.28 0.17 0.36 0.16 0.10 0.16 0.07 0.17 0.05
PCA 0.15 0.22 0.24 0.24 0.28 0.31 0.24 0.16 0.29 0.13 0.11 0.18 0.11 0.16 0.06
RSA 0.16 0.20 0.22 0.22 0.28 0.31 0.22 0.15 0.28 0.31 0.20 0.21 0.20 0.28 0.26

r-value
BMS 0.46 0.30 0.39 0.16 0.36 0.16 0.38 0.07 0.09 0.86 0.88 0.45 0.93 0.89 0.89
HMS 0.18 0.31 0.19 0.38 -0.02 0.19 0.24 0.46 0.37 0.94 0.97 0.90 1.00 0.95 1.00
OOM 0.08 0.29 0.38 0.22 0.36 0.16 0.34 0.42 0.46 0.96 0.77 0.72 0.59 0.75 0.92
AM 0.12 0.31 0.40 -0.01 0.40 0.19 0.42 0.50 0.37 0.95 0.99 0.91 0.98 0.94 1.00
PCA 0.18 -0.04 0.46 0.19 0.29 0.39 0.58 0.51 0.51 0.94 0.98 0.90 0.99 0.95 1.00
RSA 0.25 0.37 0.54 0.26 0.39 0.24 0.42 0.13 0.26 0.60 0.75 0.45 0.51 0.70 0.62

square deviation computes the sample standard deviation of
the differences between predicted values by the estimator and
actual values. RMSE is also an indicator of the predicted
and observed values. From Table VIII, we infer that the best
RMSE value in-case of ELM with linear kernel is for response
time and latency QoS parameters. The minimum RMSE value
obtained is 0.08 for HMS metrics and conformity parameter
in-case of linear kernel. From Table VIII, we observe that
in-case of polynomial kernel, the performance of PCA based
feature extraction technique is better for some parameters in
comparison to RSA based feature selection technique and
similarly the performance of RSA is better than PCA for some

parameters. We do not observe a dominate approach between
PCA and RSA.

IX. COMPARING ALGORITHMS USING STATISTICAL
SIGNIFICANCE TESTING

Our objective is to compare several learning algorithms and
assess which algorithm is better. Dietterich et al. review 5 ap-
proximate statistical tests for determining whether one learning
algorithm outperforms another on a particular learning task
and dataset [18]. We apply the 10-fold cross-validated paired t-
test as described in the paper by Dietterich et al. [18]. We have
several combination of subsets of metrics and ELM kernel
functions as learning algorithms. We consider 6 different sets

QuASoQ 2016 Workshop Preprints

16

TABLE X
PERFORMANCE MATRIX FOR ELM WITH RBF KERNEL

Resp
on

se
Tim

e

Ava
ila

bil
ity

Thr
ou

gh
pu

t

Su
cc

ess
ab

ilit
y

Reli
ab

ilit
y

Com
pli

an
ce

Best
Pra

cti
ce

s

Late
nc

y

Doc
um

en
tat

ion

M
ain

tai
na

bil
ity

M
od

ula
rit

y

Reu
sa

bil
ity

Te
sta

bil
ity

In
ter

op
er

ab
ilit

y

Con
for

mity

BMS 0.10 0.14 0.18 0.17 0.24 0.26 0.18 0.11 0.22 0.25 0.16 0.16 0.14 0.24 0.25
HMS 0.10 0.14 0.18 0.17 0.24 0.26 0.18 0.11 0.22 0.25 0.16 0.18 0.14 0.25 0.29
OOM 0.09 0.13 0.18 0.16 0.24 0.25 0.18 0.11 0.22 0.24 0.17 0.16 0.15 0.25 0.27
AM 0.09 0.13 0.19 0.17 0.24 0.26 0.20 0.11 0.21 0.24 0.17 0.17 0.14 0.24 0.31
PCA 0.09 0.13 0.19 0.16 0.24 0.25 0.20 0.11 0.21 0.24 0.17 0.17 0.14 0.24 0.30
RSA 0.10 0.13 0.18 0.16 0.24 0.25 0.18 0.11 0.22 0.26 0.16 0.16 0.14 0.26 0.26

MMRE
BMS 0.34 0.31 0.74 0.35 0.67 0.60 0.39 0.56 0.91 1.03 0.60 0.71 0.55 0.52 0.47
HMS 0.34 0.32 0.74 0.35 0.66 0.61 0.38 0.56 0.92 1.05 0.58 0.76 0.53 0.53 0.65
OOM 0.33 0.31 0.73 0.34 0.70 0.58 0.38 0.56 0.89 1.03 0.61 0.65 0.53 0.56 0.49
AM 0.32 0.32 0.74 0.35 0.68 0.60 0.48 0.56 0.90 0.97 0.59 0.72 0.50 0.54 0.69
PCA 0.31 0.30 0.75 0.34 0.68 0.59 0.49 0.58 0.88 0.96 0.60 0.73 0.49 0.54 0.68
RSA 0.34 0.30 0.73 0.33 0.68 0.57 0.37 0.55 0.90 1.12 0.61 0.70 0.55 0.55 0.47

RMSE
BMS 0.15 0.20 0.21 0.22 0.27 0.29 0.22 0.15 0.28 0.31 0.21 0.22 0.20 0.29 0.27
HMS 0.15 0.20 0.22 0.22 0.27 0.30 0.22 0.15 0.28 0.31 0.21 0.24 0.20 0.29 0.31
OOM 0.14 0.19 0.22 0.21 0.28 0.29 0.22 0.14 0.27 0.30 0.23 0.21 0.21 0.30 0.28
AM 0.14 0.20 0.22 0.22 0.28 0.29 0.23 0.14 0.27 0.30 0.23 0.23 0.20 0.29 0.32
PCA 0.14 0.19 0.22 0.21 0.28 0.29 0.24 0.16 0.27 0.30 0.23 0.23 0.20 0.29 0.32
RSA 0.15 0.19 0.21 0.21 0.27 0.29 0.21 0.14 0.27 0.31 0.22 0.22 0.20 0.30 0.28

r-value
BMS 0.31 0.50 0.19 0.02 0.08 0.24 0.50 0.46 0.15 0.87 0.81 0.47 0.81 0.78 0.93
HMS 0.34 0.18 0.43 0.38 0.29 0.33 0.33 0.38 0.34 0.93 0.96 0.48 0.91 0.78 0.97
OOM 0.57 0.34 0.35 0.44 0.55 0.37 0.64 0.29 0.26 0.82 0.58 0.71 0.53 0.70 0.83
AM 0.63 0.39 0.29 0.20 0.48 0.28 0.32 0.30 0.34 0.96 0.94 0.62 0.83 0.91 0.95
PCA 0.50 0.20 0.32 0.00 0.44 0.41 0.64 0.26 0.24 0.92 0.73 0.68 0.75 0.85 0.98
RSA 0.21 0.39 0.36 0.42 0.38 0.46 0.61 0.35 0.43 0.42 0.59 0.20 0.44 0.56 0.57

of metrics: All Metrics (AM), Only Object Oriented Metrics
(OOM), Harry M. Sneed’s Metrics (HMS), Baski and Misra
Metrics (BMS), Metrics derived after executing PCA, and
metrics derived after executing RSA. We consider 6 sets of
metrics as input to develop a model to predict 15 different
QoS parameters. We investigate the application of extreme
learning machine with three different types of kernel functions:
linear kernel, polynomial kernel, and radial basis function
with three different performance parameters. Hence, for each

subset of metrics, a total number of three set (one for each
performance measure) are used, each with 45 data points (3
kernels multiplied by 15 QoS parameters). Table XI displays
the result of the 10-fold cross-validated paired t-test analysis.
For each of the 3 kernels (Linear, Polynomial and RBF),
6 different subset of metrics are considered as input with
three different performance parameters. The three different
performance parameters are: Mean Absolute Error (MAE),
Mean Magnitude of Relative Error (MMRE) and Root Mean

TABLE XI
EXPERIMENTAL RESULTS ON T-TEST BETWEEN DIFFERENT SET OF METRICS

MAE
Mean Difference p-value

BMS HMS OOM AM PCA RSA BMS HMS OOM AM PCA RSA
BMS 0.000 0.014 0.000 0.009 0.011 -0.013 NaN 0.004 0.986 0.140 0.008 0.008
HMS -0.014 0.000 -0.014 -0.004 -0.002 -0.026 0.004 NaN 0.017 0.164 0.175 0.003
OOM 0.000 0.014 0.000 0.009 0.011 -0.013 0.986 0.017 NaN 0.155 0.025 0.026
AM -0.009 0.004 -0.009 0.000 0.002 -0.022 0.140 0.164 0.155 NaN 0.570 0.035
PCA -0.011 0.002 -0.011 -0.002 0.000 -0.024 0.008 0.175 0.025 0.570 NaN 0.005
RSA 0.013 0.026 0.013 0.022 0.024 0.000 0.008 0.003 0.026 0.035 0.005 NaN

MMRE
Mean Difference p-value

BMS HMS OOM AM PCA RSA BMS HMS OOM AM PCA RSA
BMS 0.000 0.037 0.000 0.026 0.027 -0.037 NaN 0.011 0.990 0.182 0.051 0.009
HMS -0.037 0.000 -0.037 -0.010 -0.010 -0.074 0.011 NaN 0.039 0.346 0.199 0.005
OOM 0.000 0.037 0.000 0.026 0.027 -0.037 0.990 0.039 NaN 0.199 0.081 0.078
AM -0.026 0.010 -0.026 0.000 0.000 -0.063 0.182 0.346 0.199 NaN 0.967 0.048
PCA -0.027 0.010 -0.027 0.000 0.000 -0.064 0.051 0.199 0.081 0.967 NaN 0.014
RSA 0.037 0.074 0.037 0.063 0.064 0.000 0.009 0.005 0.078 0.048 0.014 NaN

RMSE
Mean Difference p-value

BMS HMS OOM AM PCA RSA BMS HMS OOM AM PCA RSA
BMS 0.000 0.018 -0.001 0.010 0.013 -0.014 NaN 0.002 0.781 0.205 0.008 0.005
HMS -0.018 0.000 -0.020 -0.008 -0.005 -0.033 0.002 NaN 0.010 0.066 0.038 0.002
OOM 0.001 0.020 0.000 0.012 0.014 -0.013 0.781 0.010 NaN 0.167 0.021 0.050
AM -0.010 0.008 -0.012 0.000 0.003 -0.025 0.205 0.066 0.167 NaN 0.575 0.045
PCA -0.013 0.005 -0.014 -0.003 0.000 -0.027 0.008 0.038 0.021 0.575 NaN 0.004
RSA 0.014 0.033 0.013 0.025 0.027 0.000 0.005 0.002 0.050 0.045 0.004 NaN

QuASoQ 2016 Workshop Preprints

17

TABLE XII
EXPERIMENTAL RESULTS ON T-TEST BETWEEN THREE DIFFERENT KERNELS

Mean Difference
MAE MRE RMSE

Linear Polynomial RBF Linear Polynomial RBF Linear Polynomial RBF
Linear 0.000 0.007 -0.021 Linear 0.000 0.005 -0.084 Linear 0.000 0.005 -0.018
Polynomial -0.007 0.000 -0.028 Polynomial -0.005 0.000 -0.090 Polynomial -0.005 0.000 -0.023
RBF 0.021 0.028 0.000 RBF 0.084 0.090 0.000 RBF 0.018 0.023 0.000

p-value
MAE MRE RMSE

Linear Polynomial RBF Linear Polynomial RBF Linear Polynomial RBF
Linear NaN 0.13 0.001 Linear NaN 0.467 0.000 Linear NaN 0.121 0.007
Polynomial 0.13 NaN 0.000 Polynomial 0.467 NaN 0.000 Polynomial 0.121 NaN 0.005
RBF 0.001 0.000 NaN RBF 0.000 0.000 NaN RBF 0.007 0.005 NaN

Squared Error (RMSE). Hence for each kernel a total three set
(one for each performance measure) are used, each with 90
data points (six subsets of metrics multiplied by 15 QoS). The
experimental results of t-test analysis for different performance
parameter (MAE, MMRE and RMSE) and three different ELM
kernels are summarized in Table XII. Table XII contains two
parts. The first part of the table XII shows the mean difference
value and second part shows the p-value between different
pairs. Table XII reveals that there is no significant difference
between the kernel function, due to the fact that p-value is
greater than 0.05. However, by closely examining the value
of mean difference, polynomial kernel yields better result
compared to other kernels function i.e., linear and RBF kernel
functions.

X. CONCLUSION

We develop a predictive model to estimate QoS parameters
of web services using source code (implementing the services)
metrics. We experiment with six different sets of metrics as
input to develop a prediction model. The performance of these
sets of metrics are evaluated using Extreme Learning Machines
(ELM) with various kernel functions such as linear, polyno-
mial and RBF kernel function. From the correlation analysis
between metrics, we observe that there exists a high correlation
between Object-Oriented metrics and WSDL metrics. From t-
test analysis, we infer that in most of the cases, there is the
difference between the various sets of metrics in terms of the
performance of the estimator is not substantial but moderate.
We observe that the predictive model developed using Harry
M. Sneed (HMS) metrics yields better result compared to other
sets of metrics such as all metrics and Baski and Misra metrics.
From t-test analysis, we can also interpret that difference
between the three kernel functions in-terms of their influence
on the predictive accuracy is moderate. We conclude that none
of the feature selection technique dominate the other and one
feature selection method is better than the other for some
QoS parameters and vice-versa. By assessing the value of
mean difference, we infer that the polynomial kernel for ELM
yields better result compared to other kernels function i.e.,
linear and RBF kernel functions. From performance results,
it is observed that the performance of the predictive model
or estimator varies with the different sets of software metrics,
feature selection technique and the kernel functions. Finally,
we conclude that it is possible to estimate the QoS parameters
using ELM and source code metrics.

REFERENCES

[1] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” IEEE Internet computing, vol. 6, no. 2, p. 86, 2002.

[2] E. Newcomer and G. Lomow, Understanding SOA with Web services.
Addison-Wesley, 2005.

[3] J. L. O. Coscia, M. Crasso, C. Mateos, A. Zunino, and S. Misra,
Predicting Web Service Maintainability via Object-Oriented Metrics:
A Statistics-Based Approach. Springer Berlin Heidelberg, 2012, pp.
29–39.

[4] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino, “Estimating web
service interface quality through conventional object-oriented metrics.”
CLEI Electron. J., vol. 16, 2013.

[5] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detecting wsdl
bad practices in code-first web services,” Int. J. Web Grid Serv., vol. 7,
no. 4, pp. 357–387, Jan. 2011.

[6] L. Kumar, M. Kumar, and S. K. Rath, “Maintainability prediction of web
service using support vector machine with various kernel methods,” In-
ternational Journal of System Assurance Engineering and Management,
pp. 1–18, 2016.

[7] S. O. Olatunji, Z. Rasheed, K. Sattar, A. Al-Mana, M. Alshayeb, and
E. El-Sebakhy, “Extreme learning machine as maintainability prediction
model for object-oriented software systems,” Journal of Computing,
vol. 2, no. 8, pp. 49–56, 2010.

[8] E. Al-Masri and Q. H. Mahmoud, “Qos-based discovery and ranking
of web services,” in Computer Communications and Networks, 2007.
ICCCN 2007. Proceedings of 16th International Conference on, 2007,
pp. 529–534.

[9] E. Al Masri and Q. H. Mahmoud, “Investigating web services on the
world wide web,” Proceedings of the 17th International Conference on
World Wide Web, pp. 795–804, 2008.

[10] D. Baski and S. Misra, “Metrics suite for maintainability of extensible
markup language web services,” IET Software, vol. 5, no. 3, pp. 320–
341, 2011.

[11] H. M. Sneed, “Measuring web service interfaces,” in Web Systems
Evolution (WSE), 2010 12th IEEE International Symposium on, 2010,
pp. 111–115.

[12] M. Jureczko and D. Spinellis, Using Object-Oriented Design Metrics
to Predict Software Defects, ser. Monographs of System Dependability,
2010, vol. Models and Methodology of System Dependability, pp. 69–
81.

[13] D. Spinellis, “Tool writing: a forgotten art? (software tools),” IEEE
Software, vol. 22, no. 4, pp. 9–11, 2005.

[14] R. W. Swiniarski and A. Skowron, “Rough set methods in feature
selection and recognition,” Pattern recognition letters, vol. 24, no. 6,
pp. 833–849, 2003.

[15] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines:
a survey,” International Journal of Machine Learning and Cybernetics,
vol. 2, no. 2, pp. 107–122, 2011.

[16] S. Ding, Y. Zhang, X. Xu, and L. Bao, “A novel extreme learning
machine based on hybrid kernel function,” Journal of Computers, vol. 8,
no. 8, pp. 2110–2117, 2013.

[17] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
“What accuracy statistics really measure [software estimation],” IEE
Proceedings-Software, vol. 148, no. 3, pp. 81–85, 2001.

[18] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural Comput., vol. 10, no. 7, pp.
1895–1923, Oct. 1998.

QuASoQ 2016 Workshop Preprints

18

Local Variables with Compound Names and
Comments as Signs of Fault-Prone Java Methods

Hirohisa Aman

Center for Information Technology
Ehime University

Matsuyama, Ehime 790-8577, Japan
Email: aman@ehime-u.ac.jp

Sousuke Amasaki
Tomoyuki Yokogawa

Faculty of Computer Science
and Systems Engineering

Okayama Prefectural University
Soja, Okayama 719–1197, Japan

Minoru Kawahara

Center for Information Technology
Ehime University

Matsuyama, Ehime 790-8577, Japan

Abstract—This paper focuses on two types of artifacts—local
variables and comments in a method (function). Both of them are
usually used at the programer’s discretion. Thus, naming local
variables and commenting code can vary among individuals, and
such an individual difference may cause a dispersion in quality.
This paper conducts an empirical analysis on the fault-proneness
of Java methods which are collected from nine popular open
source products. The results report the following three findings:
(1) Methods having local variables with compound names are
more likely to be faulty than the others; (2) Methods having
local variables with simple and short names are unlikely to be
faulty, but their positive effects tend to be decayed as their scopes
get wider; (3) The presence of comments within a method body
can also be useful sign of fault-prone method.

I. INTRODUCTION

Software systems have been utilized in many aspects of our
daily life, and management of software quality has been the
most significant activity for ensuring the safety and security
of the people. In fact, it is hard to always make a one-shot
release of a perfect software product which has no need to be
enhanced or modified in the future; software systems usually
require upgrades after their releases in order to fix their faults
and/or to enrich their functionality. Needless to say, it is better
to reduce both the frequency of their upgrades and the size of
their patches to be applied.

To minimize upgrades of software products, thorough re-
view and testing before their releases are desirable activities.
In general, software review and testing help to detect concealed
faults or identify suspicious software modules which are fault-
prone [1], [2]. Then, those problems can be resolved by fixing
faults or refactoring problematic programs in order to reduce
the risk of causing unwanted upgrades after their releases.
While review and testing are useful activities, they are also
costly ones, so there have been many studies using software
metrics to predict fault-prone modules prior to software review
and testing activities [3]. By predicting fault-prone parts of a
software product, cost-effective review and testing would be
performed, i.e., we would detect more faults at less cost.

Most studied methods and models for predicting fault-prone
modules have been based on structural features of products
such as their sizes and complexities, or on development histo-

ries stored in their code repositories such as the number of bug-
fix commitments which have been made by a certain point in
time [4], [5], [6]. However, the impact of human factors would
also be significant since programming activities are usually
done by human beings. Different programmers would probably
develop different programs for the same specification. Such
a difference among individuals must have a certain level of
influence on the quality of products, i.e., it must cause a
dispersion in quality. Therefore, we focus on the following
two artifacts which may vary from person to person, (1) local
variables declared in a method (function) and (2) comments
written inside the method body. While these artifacts have no
impact on the structure of a program, they seem to be related
to the understandability and the readability of the program,
so they can be expected to play important roles in predicting
fault-prone methods. In this paper, we quantitatively analyze
the relationships of these artifacts with the fault-proneness.

The key contribution of this paper is to provide the follow-
ing findings derived from the results of our empirical analysis
with nine popular open source software (OSS) products:

• Local variables with descriptive compound names (for ex-
ample, “countOfSatisfactoryRecords”) can be
signs that the methods are fault-prone.

• Methods having local variables with simple and short
names (for example, “c” or “cnt”) are unlikely to be
faulty, but their positive effects tend to be decayed as
their scopes get wider.

• Comments within a method body also seem to be related
to the fault-proneness of the method.

The remainder of this paper is organized as follows. Section
II describes two types of artifacts which may vary among
programmers—(1) names of local variables and (2) comments
written inside a method body—and their relationships with the
quality of source programs, and gives our research questions
in regard to impacts of those artifacts. Section III reports
on an empirical analysis on our research questions using
popular OSS products, and discusses the results. Section IV
briefly describes related work. Finally, Section V presents the
conclusion of this paper and our future work.

QuASoQ 2016 Workshop Preprints

19

II. LOCAL VARIABLES AND COMMENTS

This paper focuses on local variables and comments, since
they may vary widely from person to person and cause a
variation in quality. This section describes concerns of local
variable names and comments in regard to source code quality,
and set up our research questions.

A. Local Variable Name

Since local variables are valid only within a function or
a method, names of local variables are usually not spec-
ified in their software specifications or design documents.
Therefore, naming local variables can be at the programmer’s
discretion. In general, different programmers would prefer
different names for local variables even if they implement
the same algorithm in their function or method. For example,
a programmer likes to use “count” as the name of local
variable for storing the number of records which satisfy a
certain condition, but another programmer prefers “c” as its
name; there might even be a programmer who wants to give
“countOfSatisfactoryRecords” to the variable.

Needless to say, local variables with fully-spelled names
such as “count” or ones with descriptive compound names
“countOfSatisfactoryRecords” make it easy to un-
derstand the roles of those variables in their function or
method since those names provide more information about
those variables than shorter and/or simpler names. Lawrie et
al. [7] surveyed the understandability of identifiers (including
not only local variables’ names but also functions’ names)
used in programs by comparing three types of names, (1)
fully-spelled names such as “count,” (2) abbreviated names
such as “cnt” and (3) names using only an initial letter
such as “c.” They reported that a longer name is easier to
understand for programmers, but there is not a significant
difference in comprehensibility between fully-spelled names
and abbreviated ones in their survey results. That is to say, it
is not always necessary to give a long and descriptive name to
a local variable, and a short and simple name may be sufficient.

There are also programming heuristics on naming local
variables. Both the GNU coding standards [8] and the Java
coding convention [9] have said that names of local variables
should be shorter. Moreover, Kernighan and Pike [10] also
argued that shorter names are sufficient for local variables;
for example, they considered that name “n” looks good for
a local variable storing “the number of points” while name
“numberOfPoints” seems to be overdone. Thus, long and
descriptive names have not been recommended for the names
of local variables. However, the impact of such a descriptive
name on the code quality has not been clearly discussed in
those heuristics.

Aman et al. [11] conducted an empirical work and showed
that methods having local variables with long names are
more likely to be fault-prone and change-prone than the other
methods. That is to say, they showed a relationship between a
long name of a local variable and a poor quality of the code
in a statistical manner. However, their analysis missed taking
into account the following two aspects: (1) the composition of

variable’s name and (2) the scope of local variable. Focusing
on not only the length of local variable’s name but also those
two aspects would be more worthy in analyzing the impact
of local variable’s name and in enhancing the quality of code.
This is a key motivation of this work.

B. Comments

Comments are documents embedded in a source file, which
usually provide beneficial information in regard to the program
[12]. While there are several types of comments, we focus
on comments written inside a method (function) body in
this paper. Those comments usually give explanations or
programmer’s memos for their implementation in the method.
Of course, the other types of comments also provide important
information regarding the program. However, such comments
written outside a method body are often the copyright des-
ignation or the programmer’s manual explaining how to use
the method, i.e., those comments may not be decided at the
discretion of the programmer. Thus, those comments outside
a method body may be out of our research scope focusing
on the individual difference among programmers. That is the
reason why we will focus only on the comments written inside
a method body.

While comments along with executable code can be a great
help in understanding the code, there have also been criticisms
on their effects: comments might be written to compensate
for a lack of readability in complicated programs [13]. In this
context, Fowler [14] pointed out that well-written comments
may be “deodorant” for masking “code smells.” Although
comments themselves are good artifacts, they may be used
for neutralizing a “bad-smelling” code. Kernighan and Pike
[10] said that programmers should not add detailed comments
to a bad code; in such a case, it is better to rewrite their
code rather than adding comments. If a programmer wants to
add detailed comments to their code during their programming
activity, the programmer may consider that the program is
hard to understand for others without those comments. That
is to say, comments may be signs of complicated programs.
Aman et al. [11], [15] reported supporting empirical results
that commented programs tend to be more fault-prone than
non-commented ones. In this paper, we conduct a further anal-
ysis examining combinations of (1) the composition of local
variable’s name, (2) local variable’s scope and (3) comments,
in terms of fault-proneness.

C. Research Questions

As mentioned above, both the local variables and the
comments are not only artifacts which may vary among
programmers, but also remarkable ones which are expected to
have relationships with the quality of the code. However, the
analyses in the previous work [11], [15] missed considerations
for the composition of local variable’s name and the scope of
local variable. We will conduct a further analysis by focusing
on those missed aspects as well. In order to clarify our points
of view in our empirical analysis, we set up the following two
research questions (RQs):

QuASoQ 2016 Workshop Preprints

20

TABLE I
SURVEYED OSS PRODUCTS.

Product Size
(KLOC)

#Methods Having
a Local Variable

Data Collection Period Domain

IP-Scanner 16 433 2006-07-19 — 2016-04-04 Networking
Checkstyle 21 738 2003-05-05 — 2016-03-28 Code analysis
eXo 21 675 2007-03-17 — 2016-04-06 Social collaboration software
FreeMind 71 2, 353 2011-02-06 — 2016-03-30 Mind-mapping tool
ARM 282 1, 300 2013-09-11 — 2016-03-14 Development support
Hibernate 387 6, 372 2007-06-29 — 2016-03-31 Object/Relational mapping
ProjectLibre 224 1, 466 2012-08-22 — 2016-04-06 MS Project clone
PMD 75 738 2002-06-21 — 2016-04-05 Source code analyzer
SQuirreL 405 6, 060 2001-06-01 — 2016-04-05 Database client
Total 1, 502 20, 135

RQ1 Can local variables with compound names be signs
of fault-prone methods?

RQ2 How does a local variable’s scope relate to the effect
of local variable’s name on the fault-proneness in a
method?

We will check the above two questions while considering the
impact of comments as well.

2

As mentioned in Section II-A, there have been concerns in
giving descriptive names to local variables. Compound names
such as “numberOfPoints” are typical descriptive names.
RQ1 asks whether a local variable with such a compound name
can be a sign to find fault-prone method or not.

If a local variable is declared with a narrow scope, it does
not seem to need a descriptive name since its influence is
limited within a narrow range. RQ2 focuses on the relationship
of local variables’ names with their scopes.

In examining these RQs, this paper expects to find yet
another useful clue of fault-prone methods by focusing on
their local variable names.

III. EMPIRICAL ANALYSIS

This section conducts an empirical analysis in which we col-
lect quantitative data from popular OSS products and analyzes
that data in order to discuss the above research questions.

A. Aim and Dataset

The aim of this analysis is to quantitatively examine the
fault-proneness of Java methods by focusing on the names
of local variables, the scopes of them and the presence of
comments. The results of this analysis are expected to present
useful points to be checked during code review activities.

We collected data from nine popular OSS products of differ-
ent size and domain, shown in Table I—(1) Angry IP Scanner
(IP-Scanner)1, (2) Eclipse Checkstyle Plug-in (Checkstyle)2,
(3) eXo Platform (eXo)3, (4) FreeMind4, (5) GNU ARM
Eclipse Plug-ins (ARM)5, (6) Hibernate ORM (Hibernate)6,

1http://angryip.org/
2http://eclipse-cs.sourceforge.net/
3http://exoplatform.com/
4http://freemind.sourceforge.net/wiki/index.php/Main Page
5http://gnuarmeclipse.livius.net/blog/
6http://hibernate.org/

(7) PMD7, (8) ProjectLibre8 and (9) SQuirreL SQL Client
(SQuirreL)9. All of them are ranked in the top 50 popular Java
products at SourceForge.net10, and their source files have been
maintained with the Git. The restrictions of the development
language and the version control system are from our data
collection tools11.

B. Procedure of Data Collection

We collected data from each OSS project in the following
procedure.

(1) Make a clone of the repository, and make the list of all
methods included in the current version.

(2) Get the change history of each method:
We check the source lines which had been changed
through each commitment on the repository, and decide
which methods were modified at that time (see Fig.1).
The decision is made by the following three steps.
(2a) Get both the older version and the newer version

of the source file which had upgraded through the
commitment.

Fig. 1. Change histories of methods included in a source file.

7https://pmd.github.io/
8http://www.projectlibre.org/
9http://www.squirrelsql.org/
10http://sourceforge.net/
11http://se.cite.ehime-u.ac.jp/tool/

QuASoQ 2016 Workshop Preprints

21

(2b) Compare those two consecutive versions, and find
different parts between them. Then, obtain corre-
sponding line numbers in the newer version.

(2c) Decide which method(s) had been upgraded, by
checking the line numbers of upgraded lines against
each method’s position (range) in the newer version.

By iterating these steps for all commitments, we get the
change history of each method.

(3) Collect the data on representative local variables’ names
and scopes, and comments for each method:
We survey names of local variables declared in the initial
version of a method (see Fig.1) and the scopes of those
variables. We define the length of a local variable’s scope
to be the number of lines where the variable is valid except
for the line of its declaration. For example, the length of
scope of variable “len” shown in Fig.2 is 5 and that of
variable “str” is 2, respectively.
When there are two or more variables in a method, we
focus on the variable whose scope is widest in the method
as the “representative local variable” in order to connect
the features of the local variable to the method. In the
example shown in Fig.2, the “representative local variable”
of method “foo” is variable “len.” If there are two or
more local variables with the widest scope in a method,
we will adopt the variable with the longer name (having
more characters) as the representative variable. Needless
to say, if there is only one local variable in a method, the
variable is the representative local variable of the method.
On the other hand, any methods having no local variable
are excluded from the data of interest in this work.
We collect the lines of comments written inside a method
body as well.

(4) Check if a bug fix has occurred for each method:
We examine the change history of each method obtained
above and check if a bug fix has occurred or not at
the method’s upgrade. We decide whether a code change
was intended to a bug fixing or not, by checking their
commitment message [16]. For example, Fig. 3 shows a
part of commitment message (obtained by using git log
command) on the repository of SquirreL SQL Client,
which seems to be a bug fixing commitment. Since method
“_init” in “AliasEditController.java” was
modified through the commitment, we consider that a bug
fixing was performed at the method.

C. Procedure of Data Analysis

We conducted our data analysis in the following procedure.

String foo (String arg) {
int len = arg.length();
if (len < 5) {
return new String(arg);

}
String str = arg.substring(0, 5);
return str + "...";

}

Fig. 2. An example of method having local variables.

commit 0d005dc6573dcc12df03917ee974a0736b4d5cfd
.............
Bug #1236 Shortcut for comment/uncomment current line
(ctrl + "/") does not
Fixed according to the suggestion in the bug #1236
Please note: The orginal comment/uncomment hot key of
SQuirreL is ctrl+Num

Fig. 3. An example of actual commitment message.

(1) Perform a random sampling of methods, which have a
local variable, from all projects:
In order to avoid an impact of project’s size bias on our
empirical results, we randomly sample the same number
of methods from each project.

(2) Divide the set of methods into subsets according to the
representative local variable’s name.
We consider “a local variable with a short name” to be
one such that the length of its name is less than or equal
to the 25 percentile in the distribution of length of name.
We also take into account if the name is compound one
or not for RQ1. Thus, we consider the following three
categories.

• V1: the set of methods such that the name of repre-
sentative local variable is short and not compound.

• V2: the set of methods such that the name of represen-
tative local variable is not short and not compound.

• V3: the set of methods such that the name of repre-
sentative local variable is a compound one.

We decide that a variable has a compound name if it is
composed in camel case such as “numberOfItems.”
That is to say, we consider a name to be compound one if
it has a lower case letter followed by an upper case letter.
We regard such a pair of lower case letter and upper case
letter as a splitting position of the name. For example,
there are two splitting positions in “numberOfItems,”
i.e., the pair of “r” and “O,” and the pair of “f” and
“I,” so the name can be split into three portions (words)
“number,” “Of” and “Items.” We consider that such
compounded names cannot be short ones composed by
at most a few characters. Thus, we do not divide the
set of methods having representative local variables with
compound names, and define V3 only (not V3 and V4).

(3) Divide the subsets of methods obtained at Step (2) into
two, according to the presence of comments:
In order to analyze the impact of comments as well, we
divide the set of methods into two subsets by checking if
there are comments12 inside method bodies or not.

• C0: the set of methods having no comment.
• C1: the set of methods having comments.

Then, we define Mij = Ci ∩ Vj for i = 0, 1 and j =
1, 2, 3. For example, M01 is the set of non-commented
methods in which the representative local variable has a
short and non-compound name. Table II summarizes these
categories (the method sets) Mij .

12We excluded the comment out cases from our data by using a checking
algorithm [17].

QuASoQ 2016 Workshop Preprints

22

TABLE II
SYMBOLS REPRESENTING CATEGORIES.

Name of representative local variable
Symbol Non-compound

Compoundshort not short
Non-commented methods M01 M02 M03

Commented methods M11 M12 M13

(4) Examine the fault-proneness of methods by the above
categories Mij :
We statistically compare the bug fix rates among cate-
gories Mij (for i = 0, 1 and j = 1, 2, 3) and discuss the
results.

(5) Examine the trends of the bug fix rates over scope:
In order to analyze the impact of variable’s scope as well,
we analyze the changes in bug fix rate by varying the
range (the length of scope) which we focus on. In the
concrete, we compare the moving averages of the bug fix
rates among categories Mij (for i = 0, 1 and j = 1, 2, 3),
by varying the range of focusing scope.

D. Results and Discussion: Collected Data

We first show the results of our data collection. Since the
minimum number of methods included in a project was 433 as
shown in Table I (project “IP-Scanner”), we randomly sampled
400 methods from each project, so our dataset consists of
3, 600 methods in total.

Table III shows the distributions of length of representative
local variables’ names in character count and in word count,
respectively. Here, “word count” means the number of words
composing a variable’s name which is split according to the
notion of the camel case. The longest names in character count
were “containsSuppressWarningsHolderModule”
and “organizationInitializersHomePathNode”
which consist of 36 characters, and the longest name in
word count was “thereWereNodesToBeFolded” which
consists of 6 words. Although such some long and descriptive
names appear in some methods, most local variables have
names that consist of at most a few characters and they are
non-compound names whose word count is one. Since the
25 percentile (Q1) of the character count is four as shown in
Table III, we will consider a name whose length is less than
or equal to four letters to be short in the following analysis.

Table IV presents the distribution of length of a represen-
tative local variable’s scope. Since there were some methods
as shown in Fig.4, where the minimum length of the scope is
zero. As all local variables are valid only within a (part of the)

TABLE III
DISTRIBUTION OF LENGTH OF

REPRESENTATIVE LOCAL VARIABLE NAMES.

Unit Min. Q1 Median Q3 Max.
Character 1 4 6 10 36

Word 1 1 1 2 6

(Q1: 25 percentile; Q3: 75 percentile)

TABLE IV
DISTRIBUTION OF SCOPE OF REPRESENTATIVE LOCAL VARIABLES.

Min. Q1 Median Q3 Max.
0 4 9 19 793

(Q1: 25 percentile; Q3: 75 percentile)

private void doConnectToRunningChanged() {
if (doStartGdbServer.getSelection()) {
boolean enabled = doConnectToRunning.getSelection();

}
}

Fig. 4. An instance of local variable whose scope is zero (“enabled”).

method, the majority of them are around a few to ten lines of
code. In order to filter out extreme data which may be noise
in our analysis, we will use only the data whose scopes are in
between 25 percentile (Q1 = 4) and 75 percentile (Q3 = 19)
of their distribution. By this data filtering, the number of our
samples are reduced to 1, 872. Table V gives the number of
methods belong to each category Mij (for i = 0, 1; j = 1, 2, 3)
after this filtering.

Table VI shows the distribution of the number of bug fixes
which had occurred in methods over their upgrades. About
18% of methods seemed to have had a hidden fault and have
fixed through their code changes. Since we already filtered
out the methods such that the scope of the representative
local variable was wide, most of the methods in our dataset
were small-sized and thus possibly more simple in structure.
Hence, conventional size metrics and structural complexity
metrics would be ineffective for analyzing the fault-proneness
of methods in detail. It would be worth it to focus on a feature
of methods other than the size and complexity. A local variable
name might be yet another useful feature to be focused on.

E. Results and Discussion: Comparison of Bug Fix Rates by
Category

Table VII presents the bug fix rate in each category Mij

(for i = 0, 1; j = 1, 2, 3). There seem to be differences in the

TABLE V
NUMBER OF METHODS BELONG TO EACH CATEGORY.

Non-Compound Compound
Category ≤ 4 > 4 Name Total
Non-Commented 401 527 427 1, 355

(M01) (M02) (M03) (C0)
Commented 139 164 214 517

(M11) (M12) (M13) (C1)
Total 540 691 641 1, 872

(V1) (V2) (V3)

TABLE VI
DISTRIBUTION OF NUMBER OF BUG FIXES

OBSERVED IN METHODS AND BUG FIX RATE.

Min. Q1 Median Q3 Max. Rate
0 0 0 0 5 18.1%

(Q1: 25 percentile; Q3: 75 percentile)

QuASoQ 2016 Workshop Preprints

23

bug fix rates among categories. The minimum bug fix rate is
0.135 in M01 and the maximum bug fix rate is 0.252 in M13,
so the latter rate is about twice larger than the former one.

We did a χ2 test for the differences of bug fix rates in the
results. The test confirmed that there are statistically significant
differences among the bug fix rates in the categories, at
p = 0.0053 < 1% level of significance (χ2 = 16.6; degree
of freedom = 5). That is to say, the above categorization
of methods by focusing on the name of local variables and
comments is meaningful for discussing the differences of fault-
proneness in the methods.

In the categories of non-commented methods M0j (for
j = 1, 2, 3), we can observe an increasing trend in the
bug fix rate (BFR): BFR(M01) = 0.135 < BFR(M02) =
0.165 < BFR(M03) = 0.211 (see Table VII and Fig.5(a)).
We also identified that the increasing tendency is statisti-
cally significant through the Cochran-Armitage test [18] at
p = 0.0035 < 1% level of significance (χ2 = 8.52; degree
of freedom = 1). From this trend, we can say that methods
having representative local variables with shorter names are
likely to be better in terms of fault-proneness, and the ones
with compound names are worse than others.

On the other hand, in the categories of commented methods
M1j (for j = 1, 2, 3), we cannot identify an increasing trend
in the bug fix rate; they seems that BFR(M11) = 0.180 ≃
BFR(M12) = 0.177 < BFR(M13) = 0.252 (see Table VII
and Fig.5(b)).

For all three categories, their bug fix rates were higher
than ones of non-commented methods, i.e., BFR(M0j) <
BFR(M1j) (for j = 1, 2, 3):

• BFR(M01) = 0.135 < BFR(M11) = 0.180,
• BFR(M02) = 0.165 < BFR(M12) = 0.177, and
• BFR(M03) = 0.211 < BFR(M13) = 0.252.

Thus, the commented methods seem to be riskier in fault-
proneness than the non-commented methods. Similar trends
in regard to comments have been reported in the previous
work [11], [15] as well. Since programmers might want to add
comments when they considered that their code is difficult to
understand without an explanation, the presence of comments
would be a sign indicating that the code is complicated.

Notice that the bug fix rates in the categories of compound
names, M03 and M13, are the highest ones among categories;
Only those two categories show bug fix rates which are higher
than the average of all (18.1%) (see Fig.5). Thus, the methods
having representative local variables with compound names

TABLE VII
BUG FIX RATES BY CATEGORY.

Non-Compound name Compound
Category ≤ 4 > 4 name

Non M01 0.135 M02 0.165 M03 0.211
commented (54

401
) (87

527
) (90

427
)

M11 0.180 M12 0.177 M13 0.252
Commented (25

139
) (29

164
) (54

214
)

(a) Non-commented (b) Commented
Fig. 5. Comparison of bug fix rates by category.

are likely to be fault-prone regardless of the presence of
comments.

F. Results and Discussion: Comparison of Bug Fix Rates over
Scope

This subsection compares the bug fix rates among the
categories from another in-depth perspective of local variable’s
property, “scope.”

We first checked correlations of the length of a local
variable name with its scope. There do not seem to be specific
correlation between the length of local variable’s name and
the length of its scope (see Fig.6): Spearman rank-correlation
coefficients in character count and in word count were 0.083
and 0.0003, respectively. Hence, the length of a local variable’s
name is statistically independent of the length of its scope, and
the scope is not a confounding factor for discussing the fault-
proneness of methods by using their local variable’s name.

To observe the changes in fault-proneness over variable’s
scope, we computed the moving averages of bug fix rates
by varying the focusing interval of scope [s − 5, s + 5] for
s = 9, 10, . . . , 14; in simplified terms, we obtained the bug fix
rates of methods whose representative local variable’s scope
is “around s” (s± 5), where the lower and the upper limit of
s are decided so as to keep the interval [s − 5, s + 5] within
the scope range of all data: between 4 and 19. For example,
if s = 9 then [4, 14] is the focusing interval, we focus only
on the methods whose representative local variable’s scope is
“around 9” (9± 5). Figure 7 shows those results.

In Fig.7(a), we observed the relationships of bug fix rates
regardless of scope: BFR(M01) < BFR(M02) < BFR(M03),

0

10

20

30

40

0 200 400 600 800

Scope (lines)

C
h
ar

ac
te

r
C

o
u
n
t

0

2

4

6

0 200 400 600 800

Scope (lines)

W
o
rd

 C
o
u
n
t

(a) Character count (b) Word count
Fig. 6. Scatter diagrams: the length of variable’s name vs. the length of
variable’s scope.

QuASoQ 2016 Workshop Preprints

24

which are similar to the results shown in Fig.5(a). Thus, we
can say with emphasis: while the fault-proneness of methods
having representative local variables with shorter names are
low, the methods having representative local variables with
compound names are high. Since the gap in the bug fix rate
between M01 and M02 becomes smaller as the scope gets
wider, the superiority of a shorter name may be limited to a
narrower scope. If a local variable with a short and simple
name is used in a wider scope, it might cause an abuse of the
variable or a poor understandability of the program’s behavior.
While Kernighan and Pike [10] said to give a short and simple
name to a local variable, they did not recommend such a
naming in any case, and their argument supposed the case
that a local variables was used in just “locally” within a part
of a program. The results observed in Fig.7(a) seem to support
such a programming heuristic.

In Fig.7(b), while M11 (≤ 4 letters) are better than M12

(> 4 letters) with narrower scopes around 9 or 10, their
magnitude relationship inverts as their scope gets wider. That
would be the reason why BFR(M11) ≃ BFR(M12) in
Fig.5(b). Therefore, we can say that a shorter name is better
with a narrower scope, but cannot claim a shorter name is
always better. If programmers wanted to add comments, there
would be a lack of clarity in their code. In such a case, a
shorter name with a wider scope might spur the program’s
poor comprehensibility. On the other hand, compound names
always show the worst (highest) bug fix rates regardless of
scope, similar to the results in Fig.7(a). Although compound
names are usually descriptive, they seem to be signs of fault-
prone methods. If a programmer wanted to give a compound
name to a local variable, the role of the variable would be
somewhat complicated, so methods having such local variables
might be riskier than the others in terms of fault-proneness.

G. Answers to RQs

From the results of Sections III-E and III-F, we summarize
our findings for RQ1 and RQ2 in the following.

For RQ1, we conclude that methods having local variables
with compound names are likely to be faulty regardless of
scope. Although we do not imply that compound names cause

0.0

0.1

0.2

10 12 14

Central Scope

B
u
g
 F

ix
 R

at
e

0.0

0.1

0.2

10 12 14

Central Scope

B
u
g
 F

ix
 R

at
e

(a) Non-commented (b) Commented

Fig. 7. Moving averages of bug fix rates over scope.

faults in methods, the presence of a local variable with a
compound name may be a clue finding a risky part from the
perspective of the fault-proneness in a method. Such a local
variable might have an important role or a more complex role
in the program, so they have to be reviewed more carefully.

For RQ2, we can say that shorter names are better for local
variables with narrower scope. As a scope gets wider, the posi-
tive effect of shorter names seems to be decayed. While a short
and simple name would be preferable as mentioned in some
coding conventions and programmers’ heuristics [8], [9], [10],
our empirical results quantitatively showed that the variable’s
scope is also a feature worthy of consideration. Moreover, the
presence of comments may degrade the superiority of shorter
names as their scopes get wider. Therefore, we should take into
account not only the composition of local variable’s name but
also its scope and comments in the code review.

H. Threats to Validity

This empirical analysis has been conducted for Java prod-
ucts. While another programming language might produce
different results, there would not be essential differences in
the concept of local variables and comments, among Java
and many other modern programming languages. Thus, the
difference in programming language would not be a serious
threat to validity.

In order to avoid the data selection bias, we adopted a
random sampling in our data collection. Moreover, we used
popular different sized OSS products from different domains.
Therefore, our construction of dataset would not be a threat
to validity.

Since our data is collected from the initial version of
the methods, some methods might be no longer used today.
However, all methods in our dataset are included in the latest
version of the product because we made our method list by
checking the latest version of their source files as described
in Section III-B. Moreover, we did a random sampling from
them. Thus, we consider it will not be a serious threat to
validity in our empirical work.

Our definition of compound name is based on the notion
of camel case. If there are local variables whose names
are composed by another rule such as the snake case, e.g.,
“number_of_items,” they are wrongly categorized into
non-compound names. Thus, we rechecked all representa-
tive local variables’ names included in our data set, then
we found only two variables having snake case names,
“s_descriptors” and “size_h.” Due to the small num-
ber of error cases, our name splitting method was not a serious
threat to validity.

IV. RELATED WORK

Lawrie et al. conducted a survey on names of identifiers in
terms of their comprehensibility for over 100 programmers [7].
In their survey research, they classified names of identifiers
into three categories (1) fully-spelled name, (2) abbreviated
name and (3) initial letter—for example, (1) “count,” (2)
“cnt” and (3) “c”—, then compared their understandability.

QuASoQ 2016 Workshop Preprints

25

Their results showed that fully-spelled names were the easiest
to understand but that there did not seem to be significant
differences with abbreviated names in their comprehensibility
level. While their work provides a useful motivation to study
whether a shorter name is better or not, they did not discuss
the fault-proneness of program.

Kawamoto and Mizuno [19] conducted an empirical study
with two OSS products and reported that a class including
a long identifier tends to be faulty. While their work is one
of our most significant previous studies, our work focuses
on a finer-grained artifact—local variable—and conducts a
statistical analysis with taking into account of the scopes and
the comments.

Binkley et al. [20] focused on the relationship be-
tween the length of identifier (including a variable’s name,
a method’s name and a class’s name) and the human
short-term memory. They identified that identifiers with
long names are related to a difficulty in program com-
prehension. They were concerned that a long chain, e.g.,
“class.firstAssignment().name.trim(),” would
cause a loss of the readability of the code. While the research
viewpoint differs from our work, the fundamental concern
about the length of name is common, and it seems to be well
accorded with our results showing the compound names are
not recommended for local variables.

Aman et al. [11] reported an empirical analysis showing
that Java methods having local variables with long names are
more likely to be fault-prone and change-prone than the other
methods. That report is our significant previous work, and this
paper focuses more detailed features of local variables, i.e., the
composition of name and their scopes. While another work by
Aman et al. [15], reporting that commented programs tend to
be more fault-prone, is also our important previous work, we
conduct a further analysis examining combinations of the local
variable’s name, the scope and the comments in this paper.

V. CONCLUSION

We have focused on programming artifacts which may
vary among individuals: local variables’ names and comments.
Popular code conventions say that names of local variables
should be shorter and simple, and it seems to have been
a heuristic of programmers. We empirically evaluated the
heuristic in terms of fault-proneness by checking the names
of local variables, their scopes and the presence of comments.
The empirical analysis for the data from nine popular OSS
products showed the following three findings.
(1) Local variables with compound names can be signs of

fault-prone methods.
(2) Methods having the representative local variables with

non-compound and shorter names (≤ 4 letters) are less
fault-prone, but their positive effects are decayed as their
scopes get wider (around 10 or more lines).

(3) Methods having comments in their bodies are also more
likely to be faulty.

These findings are expected to be useful guidelines for more
efficient code reviews.

One of our significant future works is to conduct further
analyses of local variables’ names, which include an ap-
plication of the natural language processing technologies to
evaluate the meaning of local variables’ names. A further
analysis with products written in a programming language
other than Java is also our future project in order to ensure
the generality of the above findings.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI #16K00099.
The authors would like to thank anonymous reviewers for their
helpful comments.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing.
N.J.: John Wiley & Sons, 2004.

[2] P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proc. 9th Joint Meeting on Foundations of Softw.
Eng., Aug. 2013, pp. 202–212.

[3] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences
and results from initiating field defect prediction and product test
prioritization efforts at ABB Inc.” in Proc. 28th Int’l Conf. Softw. Eng.,
May 2006, pp. 413–422.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–
496, July 2008.

[5] Y. Liu, T. Khoshgoftaar, and N. Seliya, “Evolutionary optimization
of software quality modeling with multiple repositories,” IEEE Trans.
Softw. Eng., vol. 36, no. 6, pp. 852–864, Nov 2010.

[6] F. Rahman and P. Devanbu, “How, and why, process metrics are better,”
in Proc. 2013 Int’l Conf. Softw. Eng., May 2013, pp. 432–441.

[7] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in Proc. 14th Int’l Conf. Program Comprehension,
June 2006, pp. 3–12.

[8] Free Software Foundation, “Gnu coding standards,”
https://www.gnu.org/prep/standards/.

[9] Sun Microsystems, “Code conventions for the java program-
ming language,” http://www.oracle.com/technetwork/java/codeconvtoc-
136057.html.

[10] B. W. Kernighan and R. Pike, The practice of programming. Boston,
MA: Addison-Wesley Longman, 1999.

[11] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical analysis
of change-proneness in methods having local variables with long names
and comments,” in Proc. 2015 ACM/IEEE Int’l Symp. Empirical Softw.
Eng. and Measurement, Oct. 2015, pp. 50–53.

[12] M. J. Sousa and H. Moreira, “A survey on the software maintenance
process,” in Proc. Int’l Conf. Softw. Maintenance, Nov. 1998, pp. 265–
274.

[13] R. P. Buse and W. R. Weimer, “A metric for software readability,” in
Proc. 2008 Int’l Symp. Softw. Testing and Analysis, 2008, pp. 121–130.

[14] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA: Addison-Wesley Longman, 1999.

[15] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Lines of comments
as a noteworthy metric for analyzing fault-proneness in methods,” IEICE
Trans. Inf. & Syst., vol. E98-D, no. 12, pp. 2218–2228, Dec. 2015.

[16] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proc. Int’l Workshop on Mining Softw, Repositories, May
2005, pp. 1–5.

[17] H. Aman, “An empirical analysis of the impact of comment statements
on fault-proneness of small-size module,” in Proc. 19th Asia-Pacific
Softw. Eng. Conf., Dec. 2012, pp. 362–367.

[18] A. Agresti, Categorical Data Analysis, 2nd ed. N.J.: Wiley, 2002.
[19] K. Kawamoto and O. Mizuno, “Predicting fault-prone modules using the

length of identifiers,” in Proc. 4th Int’l Workshop on Empirical Softw.
Eng. in Practice, Oct. 2012, pp. 30–34, Japan.

[20] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Programming,
vol. 74, no. 7, pp. 430–445, May 2009.

QuASoQ 2016 Workshop Preprints

26

Towards improved Adoption: Effectiveness of
Research Tools in the Real World

Richa Awasthy
Australian National University

Canberra, Australia
Email: richa.awasthy@anu.edu.au

Shayne Flint
Research School of Computer Science

Australian National University
Canberra, Australia

shayne.flint@anu.edu.au

Ramesh Sankaranarayana
Research School of Computer Science

Australian National University
Canberra, Australia

ramesh@cs.anu.edu.au

Abstract—One of the challenges in the area of software engi-
neering research has been the low rate of adoption by industry
of the tools and methods produced by university researchers. We
present a model to improve the situation by providing tangible
evidence that demonstrates the real-world effectiveness of such
tools and methods. A survey of practising software engineers
indicates that the approach in the model is valid and applicable.
We apply and test the model for providing such evidence and
demonstrate its effectiveness in the context of static analysis using
FindBugs. This model can be used to analyse the effectiveness
of academic research contributions to industry and contribute
towards improving their adoption.

I. INTRODUCTION

The success of software engineering research in universi-
ties can be measured in terms of the industrial adoption of
methods and tools developed by researchers. Current adoption
rates are low [1] and this contributes to a widening gap
between software engineering research and practice. Consider,
for example, code inspections, which according to Fagan’s
law, are effective in reducing errors in software, increasing
productivity and achieving project stability [2]. Static analysis
tools developed by university researchers help automate the
code inspection process. However, the use of such tools has
not obtained widespread adoption in industry. One reason for
this limited adoption is that researchers often fail to provide
real-world evidence that the methods and tools they develop
are of potential value to industry practitioners [1], [3].

One approach to providing such evidence is to conduct
experiments that demonstrate the effectiveness of research
tools in a real-world context. We apply this approach to
analyse the effectiveness of a static analysis tool. In doing
so, we demonstrate that such experimentation can contribute
to closing the gap between research and practice.

The structure of this paper is as follows: Section II provides
the background of our work leading to the proposed model;
Section III presents a survey which shows that real world
evidence can positively influence the decision of software
engineers to use research tools; Section IV explains our
experimental method which uses FindBugs [4] to analyse real
world bugs in Eclipse [5] code; Section V discusses how
simple experiments like ours can encourage more developers
to use tools developed by researchers and thus contribute to
closing the gap between research and practice. Section VI

provides an overview of related research; Section VII presents
conclusions and discusses future research.

II. BACKGROUND

Since the 1970’s there have been ongoing efforts to increase
the adoption of research outcomes outside of universities [6].
As a result of the United States Bayh Dole Act in 1980
[7], universities began to establish Technology Transfer Offices
(TTOs) to facilitate the transfer of knowledge from universities
to industry [8]. However, the effectiveness of TTOs has been
questioned in recent years [9], [10] and there is a need to
look beyond TTOs to improve adoption of academic research
in industry.

Researchers in universities are working towards addressing
significant problems. The outcome of their work can be a
tool or method which may or may not achieve wide-spread
industry adoption. A key factor limiting the readiness of these
research outcomes for adoption in industry is a lack of tangible
evidence that they would be effective in practice [1]. This
suggests that demonstrating the effectiveness of a tool in
practice can contribute to improved adoption.

Figure 1 depicts our model for demonstrating the real-
world effectiveness of research tools and methods. The model
involves 4 steps with intermediate activities. First step is
to identify a problem to address. Step 2 is to develop a
tool or a method to address the problem. The intermediate
iterative activity involved between these 2 steps is the process
of solution formulation, which involves adding new ideas to
the available state of the art. These steps are followed by
iterative testing for validation in Step 3. Step 3 confirms
the readiness of the research outcome for adoption. An idea
should be validated in a practical setting [11] to improve its
adoption. Our model respects this viewpoint and emphasises
the importance of tangible evidence from a practical setting
in Step 4. Researchers should test their research outcomes
in a scenario that involves real world users who are an
important stakeholder for industry to increase the relevance of
the evidence for industry. Demonstrating the effectiveness of
research outcomes in real-world scenario will lead to change
in industry perception and improved adoption of the research
outcomes.

QuASoQ 2016 Workshop Preprints

27

We test the applicability of this model in the static analysis
context by identifying a static analysis tool created by univer-
sity researchers and analysing its effectiveness in a real-world
scenario.

Problem
Develop a

Tool/method
Test in the

lab

Test in
the real

environment

Improved
Industrial Adoption

of the tool

Solution
Formulation

Ready for
 testing

Effectiveness
leading to

University Research

Modify

Ready for
adoption

 1 2 3

 4

Fig. 1. Proposed model for improving adoption of university research by
industry

III. THE IMPACT OF EVIDENCE FROM REAL-WORLD
SCENARIO

In order to understand the impact of evidence from a user-
scenario on real-world decisions to use a research tool, we
conducted an on-line survey of software developers.

The survey uses static analysis as an example and was
prepared and delivered using our university’s online polling
system [12]. Participants were invited by email which included
a link to the on-line survey and a participant information
statement. On completion of the survey, we manually analysed
the results.

III.B.1

III.B.2

III.B.3

Fig. 2. Flowchart for the survey questionnaire design

A. Participants

We invited 20 software industry practitioners and around
10 computer science researchers with industry experience in
software development.

B. Survey Questions

The survey data consisted of responses to the sequence of
questions depicted in Figure 2 and described below.

1) Software engineering experience: We gathered informa-
tion about the level of software development expertise of each
participant so that we can understand any relationship between
experience and use of static analysis tools.

2) Static analysis knowledge: We asked the following ques-
tions to determine each participant’s level of understanding and
use of static analysis tools.

a) ‘Static analysis is the analysis of computer software
to find potential bugs without actually executing the
software. Have you heard of static analysis before?’

b) ‘Have you used any automated static analysis tools
during software development (e.g. FindBugs, Coverity)?’

Answers to these questions were used to determine the final
question we asked, as indicated in Figure 2.

3) The impact of the tangible evidence: At the end of the
survey each participant who has not used static analysis tools
was asked a question to determine the impact that tangible
evidence (that the tool can identify real bugs early in the
software development life-cycle) might have on their approach
to static analysis. The exact question asked depended on their
answers to questions described in Section III-B2. Specifically:

1) Participants who had no knowledge of static analysis were
asked ‘Would our research results interest you in gaining
knowledge of static analysis and adoption of automated
static analysis tools?’.

2) Participants who knew about static analysis but had not
used any static analysis tools (our primary group of
interest) were asked to rate the impact that the following
factors would have on their decision to adopt static
analysis tools. A Likert scale was used with 5 options (No
influence, May be, Likely, Highly Likely, and Definitely).

a) Effectiveness of tool in finding bugs
b) Ease of use
c) Integration of tool to development environment.
d) License type.
e) The availability of tangible evidence that the tool can

identify real bugs early in the software development
life-cycle - before they are reported by users.

C. Analysis of Survey Results

The response rate for our survey was high with 27 responses
out of 30 invitations. Responses to the survey indicate that
tangible evidence of real-world effectiveness of a tool has
positive impact on decisions to adopt static analysis tools.

Analysis of the survey results provides the following spe-
cific findings:

QuASoQ 2016 Workshop Preprints

28

1) Software Engineering Experience - As expected, partici-
pants had varied level of experience in software devel-
opment. However, we do not find any direct relation
between the experience and usage of tools.

2) Static Analysis Knowledge - Survey results show that
9 participants (33%) had no prior knowledge of static
analysis. It is noteworthy that while the remaining 18
participants knew about static analysis, only 4 of them
had used static analysis tools.

3) Impact of the tangible evidence - Our survey results show
that tangible evidence has a positive impact on decisions
to adopt static analysis tools. Out of the 9 respondents
who had no prior knowledge of static analysis, 8 said that
tangible evidence would interest them in gaining knowl-
edge of static analysis and adopting automated static
analysis tools. This is a valuable information indicating
that providing evidence of effectiveness could contribute
to improved adoption of research tools in industry.
Of the 14 participants who had knowledge of static
analysis but who had not used any tools, 7 participants
(50%) indicated that tangible evidence would be Highly
Likely or would Definitely influence their decision to
adopt static analysis tools (Figure 3). Another four par-
ticipants indicated that such evidence would be Likely
to influence their decision. Considering the response of
three participants as May be, it is possible that they
respond positively, which will add to the percentage of
participants agreeing that tangible evidence will influence
the decision.

None May be Likely Highly likely Definitely
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Positive influence on decisions to adopt static analysis tool

N
u

m
b

e
r

o
f P

a
rt

ic
ip

a
n

ts

Fig. 3. The impact of tangible evidence on decisions to adopt static analysis
tools

As shown in Figure 4, our results also indicate that other
factors such as Ease of use, IDE integration and License
type have a positive impact on decisions to adopt static
analysis tools. It is interesting to note that under the May
be and Definitely category, the top two influencing factors
are License and Tangible evidence.

Our results clearly show that tangible evidence is an impor-
tant factor in influencing decisions to adopt research tools in
industry.

None May be Likely Highly likely Definitely
0

1

2

3

4

5

6

7

Effectiveness of tool

Ease of use

Integration to IDE

License

Tangible evidence

Influence of the factor

N
u

m
b

e
r

o
f p

a
rt

ic
ip

a
n

ts

Fig. 4. Other factors influencing decisions to adopt static analysis tools

IV. APPLICABILITY OF THE MODEL

In order to test the applicability of our proposed model,
we first had to identify an appropriate tool developed by
researchers and a scenario to test its effectiveness. FindBugs
version 3.0 was chosen for our research as according to the
tool’s website, there are few organizations using FindBugs
[4]. This indicates low adoption of the tool in software
industry. Also, it is an open-source static analysis tool with
a university’s trademark. We conducted an experiment with
the FindBugs static analysis tool to analyse its effectiveness
in the real world. To analyse the effectiveness in real-world,
we wanted to determine if FindBugs is capable of finding
bugs reported by real users of Eclipse. To do so, we adopted
an approach to establishing a connection between warnings
generated by the FindBugs static analysis tool and field bugs
reported by Eclipse users on Bugzilla [13] that includes the
below steps:

1) Use FindBugs to identify potential bugs in Eclipse class
files.

2) Search the Eclipse bug-tracking system Bugzilla to iden-
tify bug reports that include stack traces.

3) Match the code pointed in Java classes associated with
FindBugs warnings identified in 1) with code pointed by
stack trace associated with the bugs identified in 2).

A. FindBugs

FindBugs analyses Java class files to report warnings and
potential errors in the associated source code. The tool per-
forms analysis on Java class files without needing access to
the source code. It is stable, easy to use, and as mentioned
in [14] has higher precision compared to other tools such as
CodePro Analytix, PMD and UCDetector. It has a low rate
of false positives [15], and has more than 400 types of bug
classification along with categorization based on severity level.
The analysis is based on bug patterns which are classified
into nine categories: Bad Practice, Correctness, Experimen-
tal, Internationalization, Malicious Code Vulnerability, Multi-
threaded Correctness, Performance, Security, and Dodgy Code.
The warnings reported by FindBugs can be further categorised
within the tool as: Scariest (Ranks 1-4), Scary (Ranks 1-9) and
Troubling (Ranks 1-14). The category includes all the bugs

QuASoQ 2016 Workshop Preprints

29

with the ranking mentioned, for example, the ‘Scary’ category
will list the bugs included under the ‘Scariest’ category, as
well.

B. Eclipse

We identified Eclipse as the object of analysis as it is a large
widely used open source project with good records of user
reported bugs over many years and versions of the software.
For our experimentation we focused on the analysis of Eclipse
version 4.4 (Luna) because it was the current version at the
time of our experimentation.

C. Identification of potential bugs

Java Jars associated with Eclipse versions 4.4 were analysed
using FindBugs version 3.0. Findbugs generated a list of
warnings pertaining to code considered as faulty.

D. Search for user reported bugs

The Eclipse project uses Bugzilla to track bugs reported
by users. In order to identify bugs that could be associated
with FindBugs warnings, we needed to identify bug reports
that included a documented stack-trace. This was achieved by
performing an advanced Bugzilla search for bugs that satisfied
the following criteria:

• Version: 4.4,
• Classification: Eclipse,
• Status: NEW, ASSIGNED, VERIFIED 1.

We then inspected the query results to identify those bug
reports that included a documented stack-trace.

E. Match FindBugs warnings with user reported Bugs

Our last step was to match warnings generated by FindBugs
(Section IV-C) with user-reported bugs (Section IV-D). This
was achieved using the following steps:

1) For each of the bugs identified using the procedure
described in Section IV-D, we identified the Java class
that was the likely source of the reported bug. This class
was usually the one appearing at the top of the stack-
trace. In some cases, we had to traverse through lower
levels in the stack-trace to find matching classes.

2) We then searched for the above classes in the warnings
generated by FindBugs (Section IV-C) and analysed the
code associated with the warning. We did this by using
the FindBugs class name filter feature to show warnings
related to the class of interest.

3) Finding a matching line of code in the FindBugs warnings
establishes a connection between the warnings generated
by FindBugs and the bugs reported by users.

1Because our experiment looks at the ability of FindBugs to find bugs that
have not been fixed, we ignore the bugs with CLOSED status. In addition,
we do not consider the possibility of bugs that have been closed incorrectly.

F. Results of the Experiment

1) Analysis of FindBugs warnings for Eclipse version 4.4:
Our analysis of FindBugs warnings for Eclipse version 4.4
showed that static analysis of Eclipse version 4.4 generated
warnings in the categories of Correctness (652), Bad Prac-
tice (547), Experimental (1), Multithreaded correctness (390),
Security (3), and Dodgy code (55) under the rank range of
Troubling (Rank 1-14), as depicted in Figure 5. We focused
on the Scariest warnings (Rank 1-4), considering them as real
problems requiring attention. There were 82 Scariest warnings
in total. These comprised 81 warnings in the Correctness
category and one in the Multi-threaded correctness category.

Additional investigation found that warnings in the Cor-
rectness category included a range of coding errors such as
comparisons of incompatible types, null pointer dereferences
and reading of uninitialized variables.

Correctness

Bad Practice

Experimental

Multithreaded correctness

Security

Dodgy code

0 100 200 300 400 500 600 700

Number of warnings

C
a

te
g

o
ry

 o
f w

a
rn

in
g

s

Fig. 5. Number of warnings in each category in Eclipse 4.4

2) Connection between FindBugs warnings and user re-
ported bugs: Execution of the query described in Section
IV-D resulted in a dataset of 2575 bugs, which included
347 enhancements. We excluded the enhancements from our
analysis. Out of the remaining bugs, we have analysed 1185
bug reports so far, 90 of which included a documented stack-
trace.

We used the method described in Section IV-E to compare
the stack-trace in these 90 bug reports with the warnings
generated by FindBugs (Section IV-F1). We found that six
of the user reported bugs could be associated with FindBugs
warnings as presented in Table I. The data presented in the
table includes the Bugzilla Bug ID, a description of the bug,
and a description of the warning generated by FindBugs.

V. DISCUSSION

The model proposed in this paper considers that in order
to improve the adoption of university research outcomes, re-
searchers need to demonstrate its effectiveness in a real-world
scenario and think about the value of their research outcomes
beyond the lab boundaries. Our main purpose in conducting
the experiment described was to test the applicability of our
proposed model by analysing the value of a research tool in
industrial practice. Specifically, we evaluated the performance
of the FindBugs static analysis tool by analysing its capability

QuASoQ 2016 Workshop Preprints

30

TABLE I
USER-FILED BUGS IN ECLIPSE WITH ASSOCIATED WARNING IN FINDBUGS

Bug Id Problem Description FindBugs Warning
436138 NPE when select SWT.MOZILLA style in

control example
Method call passes null for nonnull parameterThis method call passes a null value for a
nonnull method parameter. Either the parameter is annotated as a parameter that should
always be nonnull, or analysis has shown that it will always be dereferenced. Bug kind
and pattern: NP - NP NULL PARAM DEREF

414508 NPE trying to launch Eclipse App Load of known null value. The variable referenced at this point is known to be null due
to an earlier check against null. Although this is valid, it might be a mistake (perhaps
you intended to refer to a different variable, or perhaps the earlier check to see if the
variable is null should have been a check to see if it was nonnull). Bug kind and pattern:
NP - NP LOAD OF KNOWN NULL VALUE

433526 browser.getText() is throwing exception af-
ter Internet Explorer 11 install

Possible null pointer dereference There is a branch of statement that, if executed, guaran-
tees that a null value will be dereferenced, which would generate a NullPointerException
when the code is executed. Of course, the problem might be that the branch or statement
is infeasible and that the null pointer exception can’t ever be executed; deciding that is
beyond the ability of FindBugs.
Bug kind and pattern: NP - NP NULL ON SOME PATH

459025 Can’t right-click items in manifest editor’s
extensions tab on OSX

Non-virtual method call passes null for nonnull parameter A possibly-null value is
passed to a nonnull method parameter. Either the parameter is annotated as a parameter
that should always be nonnull, or analysis has shown that it will always be dereferenced.
Bug kind and pattern: NP - NP NULL PARAM DEREF NONVIRTUAL

427421 NumberFormatException in periodic
Workspace Save Job

Boxing/unboxing to parse a primitive A boxed primitive is created from a String, just to
extract the unboxed primitive value. It is more efficient to just call the static parseXXX
method.
Bug kind and pattern: Bx - DM BOXED PRIMITIVE FOR PARSING

428890 Search view only shows default page (NPE
in PageBookView.showPageRec)

Possible null pointer dereference There is a branch of statement that, if executed, guaran-
tees that a null value will be dereferenced, which would generate a NullPointerException
when the code is executed. Of course, the problem might be that the branch or statement
is infeasible and that the null pointer exception can’t ever be executed; deciding that is
beyond the ability of FindBugs.
Bug kind and pattern: NP - NP NULL ON SOME PATH

426485 [EditorMgmt][Split editor] Each split causes
editors to be leaked

Possible null pointer dereference There is a branch of statement that, if executed, guaran-
tees that a null value will be dereferenced, which would generate a NullPointerException
when the code is executed. Of course, the problem might be that the branch or statement
is infeasible and that the null pointer exception can’t ever be executed; deciding that is
beyond the ability of FindBugs.
Bug kind and pattern: NP - NP NULL ON SOME PATH

in generating warnings relating to real-world bugs reported by
users of the Eclipse IDE.

Our results indicate that FindBugs is capable of identifying
bugs that will manifest themselves as bugs reported by users.
Since real-world evidence would influence the decision to
adopt a tool as indicated in the survey results, FindBugs
needs to improve the percentage of such warnings to make
the evidence convincing. Currently, FindBugs does not have
the intelligence to track the bug among the list of false pos-
itives that can manifest. Our research provides improvement
directions to FindBugs in identifying the important bugs from
the warning base by analysing the historical data and user re-
quirement. FindBugs results can be improved by introducing a
new ‘user-impact’ category to classify the warnings which will
potentially have an impact in the client environment and hence,
need immediate attention. For this, sufficient information from
industrial practice needs to be applied into testing the research
tool.

The model appears simple but it is challenging for re-
searchers to identify a scenario and approach users and/or data
to demonstrate the effectiveness of their tool or methods. It
might be difficult for them to find the user-filed data always.
Also, once they have the data to demonstrate the effectiveness,
they need a mechanism to propagate it to industry. Also,
the concern about the relevance of research suggests that re-

searchers need to think about the relevance of the problem they
are trying to address. These factors indicate that universities
and industry need to start collaborating at an early stage and
consider co-developing whenever possible and feasible. This
can pave a good start towards improving the relevance and
adoption of research outcomes in general, and bridging the
gap between industry and academia.

A. Limitations and Threats to Validity

Our experiments were limited by the small number of
Eclipse bugs reported with a documented stack-trace. It is
important to note that the ability to analyse only 90 of the
1185 bugs considered reflects a limitation of our approach
and does not reflect a limitation of FindBugs. There are some
limitations to the validity of our experiments:

1) FindBugs does not always point to the exact line number
referred to in the stack trace. It might be possible that
the source of error could be different from the warnings
provided by FindBugs.

2) While it is likely that the FindBugs warnings listed in
Table I are the actual cause of the listed real-world bugs
reported by Eclipse users, we cannot be certain of this.

3) As there is lack of literature detailing the use of static
analysis tools like FindBugs by the Eclipse development
team, a comparison study was not feasible.

QuASoQ 2016 Workshop Preprints

31

4) This test highlights the relevance of static analysis tools,
though the effectiveness in real-world projects, particu-
larly large scale projects, cannot be confirmed as the sam-
ple size of our survey is small. However, by considering
the sample sizes of 20 and 18 used in related studies [16],
[17], we decided to proceed with our sample size of 27
participants.

5) The conclusion might not be generalised as the results
are specific to the static analysis context. The proposed
model needs to be validated regarding the tools in other
phases of software development.

VI. RELATED WORK

Adoption of software engineering research outcomes in
industry practice has been a concern [1], [18]. There have been
ongoing efforts to improve the adoption of research outcomes
since the 1970’s. However, the efforts mainly focused on
approaches to increase university-industry collaboration for
improving adoption through technology transfer. These efforts
include policy changes leading to establishment of TTOs in
universities and proposing models for effective technology
transfer [8], [19]. However, TTOs generally focus on building
collaborative relationships between researchers and industry
[20] rather than the readiness of research outcomes for adop-
tion in industry. In this paper we demonstrated how some
simple experiments can analyse the effectiveness of software
engineering research tools in practice. Specifically we analysed
the effectiveness of a static analysis tool.

Various experiments have been conducted to demonstrate
the effectiveness of the FindBugs static analysis tool by show-
ing that it is able to detect the specific problems it has been
designed to detect [15], [21], [22]. However, our experiment
has been conducted in unconstrained environment that involves
real-world scenario that has impacted clients. Ruthruff et al.
[23] involved developers in determining which reports were
useful and which ones were not. This information was used
to filter FindBugs warnings so that only those that developers
found useful were reported. We retrace the user-filed bug to
the warning generated by the static analysis tool. This can
pave way to create an intelligent mechanism to prioritise bugs
based on user-impact.

Al Bessey et al. [24] identify several factors that impacted
the industry adoption of their static analysis tool Coverity [25].
They include trust between the researchers and industry users,
the number of false positives, and the capability of the tool
to provide warnings relating to problems which have had a
significant impact on its users. Our work also confirms that
tool’s capability is important. It also identifies that licensing,
IDE integration and ease of use are significant factors.

Johnson et al. [16] investigated the reasons behind the
low adoption rate of static-analysis tools despite their proven
benefits in finding bugs. Their investigations confirmed that
large numbers of false positives is a major factor in low
adoption rates. We note that their findings were based on the
survey of developers who had all used static analysis tools.
This meant that authors were not able to comment on whether

low-adoption rates were due to a lack of awareness of static
analysis tools among developers.

None of the work described above analyses the effectiveness
of FindBugs in identifying problems that manifest themselves
as real-world bugs reported by users. The experiments de-
scribed in this paper analyse the connection between warnings
generated by the FindBugs static analysis tool and field defects
reported by Eclipse users on Bugzilla bringing in client into
the perspective. The experiments test the applicability of our
proposed model in the static analysis context.

VII. CONCLUSION AND FUTURE WORK

We have proposed a model to contribute towards improving
the adoption of research tools by industry by demonstrating
the effectiveness of the tool in real world scenario. We have
presented a mechanism which involves a research tool as a
medium of building tangible evidence. A survey of software
developers supports our hypothesis that such tangible evidence
of effectiveness of a tool can have a positive influence on real-
world decisions to adopt static analysis tools.

Further experiment for testing the applicability of the model
in the static analysis context was conducted. In this experi-
ment, by establishing a connection between user-reported bugs
and warnings generated by the FindBugs static analysis tool,
we have demonstrated the ability of static analysis tools to
eliminate some defects before software is deployed. However,
the evidence needs to be stronger regarding the number of such
connections in order to be more convincing and improving the
industrial adoption of the tool.

Future research would present more detailed analysis of
the complete list of the bugs found in Section IV-F2, which
will provide us precise data about the effectiveness of the
tool according to our approach. Our approach also presents
a scenario where industry and university researchers can work
together to create more useful tools. We plan to discuss these
results with the FindBugs development team to explore the
possibility of strengthening the evidence and devising a new
classification user-impact to indicate the warnings that would
manifest in client-environment.

Finally, we would like to adapt this approach to explore the
effectiveness of research tools involved in other phases of the
software development life-cycle.

REFERENCES

[1] D. Rombach and F. Seelisch, “Balancing agility and formalism in
software engineering,” B. Meyer, J. R. Nawrocki, and B. Walter, Eds.
Berlin, Heidelberg: Springer-Verlag, 2008, ch. Formalisms in Software
Engineering: Myths Versus Empirical Facts, pp. 13–25.

[2] A. Endres and H. D. Rombach, A handbook of software and systems
engineering: empirical observations, laws and theories. Pearson
Education, 2003.

[3] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and
industrial relevance of technology evaluations,” Empirical Software
Engineering, vol. 16, no. 3, pp. 365–395, 2011.

[4] University of Maryland, “Findbugs,” viewed May 2015,
http://findbugs.sourceforge.net, 2015.

[5] The Eclipse Foundation, “Eclipse,” viewed May 2015,
http://www.eclipse.org, 2015.

QuASoQ 2016 Workshop Preprints

32

[6] R. Grimaldi, M. Kenney, D. S. Siegel, and M. Wright, “30 years after
bayh–dole: Reassessing academic entrepreneurship,” Research Policy,
vol. 40, no. 8, pp. 1045–1057, 2011.

[7] W. H. Schacht, “Patent ownership and federal research and development
(R&D): A discussion on the Bayh-Dole act and the Stevenson-Wydler
act.” Congressional Research Service, Library of Congress, 2000.

[8] D. S. Siegel, D. A. Waldman, L. E. Atwater, and A. N. Link, “Com-
mercial knowledge transfers from universities to firms: improving the
effectiveness of university–industry collaboration,” The Journal of High
Technology Management Research, vol. 14, no. 1, pp. 111–133, 2003.

[9] J. G. Thursby, R. Jensen, and M. C. Thursby, “Objectives, characteristics
and outcomes of university licensing: A survey of major us universities,”
The Journal of Technology Transfer, vol. 26, no. 1-2, pp. 59–72, 2001.

[10] D. S. Siegel, D. A. Waldman, L. E. Atwater, and A. N. Link, “Toward
a model of the effective transfer of scientific knowledge from academi-
cians to practitioners: qualitative evidence from the commercialization
of university technologies,” Journal of Engineering and Technology
Management, vol. 21, no. 1, pp. 115–142, 2004.

[11] R. L. Glass, “The relationship between theory and practice in software
engineering,” Communications of the ACM, vol. 39, no. 11, pp. 11–13,
1996.

[12] The Australian National University, “Anu polling online,” viewed July
2015, ¡https://anubis.anu.edu.au/apollo/¿, 2015.

[13] Creative Commons License, “bugzilla,” viewed May 2015,
https://www.bugzilla.org, 2015.

[14] A. K. Tripathi and A. Gupta, “A controlled experiment to evaluate the
effectiveness and the efficiency of four static program analysis tools for
java programs,” in Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering. ACM, 2014,
p. 23.

[15] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[16] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Software
Engineering (ICSE), 2013 35th International Conference on. IEEE,
2013, pp. 672–681.

[17] L. Layman, L. Williams, and R. S. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in Empirical Software Engineering and Measure-
ment, 2007. ESEM 2007. First International Symposium on. IEEE,
2007, pp. 176–185.

[18] S. Beecham, P. OLeary, I. Richardson, S. Baker, and J. Noll, “Who are
we doing global software engineering research for?” in 2013 IEEE 8th
International Conference on Global Software Engineering. IEEE, 2013,
pp. 41–50.

[19] S. L. Pfleeger, “Understanding and improving technology transfer in
software engineering,” Journal of Systems and Software, vol. 47, no. 2,
pp. 111–124, 1999.

[20] D. S. Siegel, R. Veugelers, and M. Wright, “Technology transfer offices
and commercialization of university intellectual property: performance
and policy implications,” Oxford Review of Economic Policy, vol. 23,
no. 4, pp. 640–660, 2007.

[21] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Using findbugs on production software,” in Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems
and applications companion. ACM, 2007, pp. 805–806.

[22] ——, “Evaluating static analysis defect warnings on production soft-
ware,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. ACM, 2007,
pp. 1–8.

[23] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: an
experimental approach,” in Proceedings of the 30th international con-
ference on Software engineering. ACM, 2008, pp. 341–350.

[24] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[25] Synposys Inc., “Coverity,” viewed May 2015, http://www.coverity.com,
2015.

QuASoQ 2016 Workshop Preprints

33

Code Coverage Analysis of Combinatorial Testing
Eun-Hye Choi⇤, Osamu Mizuno†, Yifan Hu†

⇤ National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
Email: e.choi@aist.go.jp

† Kyoto Institute of Technology, Kyoto, Japan
Email: o-mizuno@kit.ac.jp, y-hu@se.is.kit.ac.jp

Abstract—Combinatorial t-way testing with small t is known as
an e�cient black-box testing technique to detect parameter inter-
action failures. So far, several empirical studies have reported the
e↵ectiveness of t-way testing on fault detection abilities. However,
few studies have investigated the e↵ectiveness of t-way testing
on code coverage, which is one of the most important coverage
criteria widely used for software testing. This paper presents a
quantitative analysis to evaluate the code-coverage e↵ectiveness
of t-way testing. Using three open source utility programs, we
compare t-way testing with exhaustive (all combination) testing
w. r. t. code coverage and test suite sizes.

Keywords-Combinatorial testing; t-way testing; Exhaustive test-
ing; Code coverage; Line coverage; Branch coverage.

I. Introduction

Combinatorial testing [15], [20] is a common black-box
testing to detect failures caused by parameter interactions.
Modern software systems have a lot of parameters, and thus
their interactions are too numerous to be exhaustively tested.
Combinatorial t-way testing [15], [20], where t is called an
interaction strength, addresses this problem by testing all value
combinations of t parameters with small t, instead of testing all
parameter-value combinations exhaustively. t-way testing has
been applied to e. g. conformance testing for DOM (Document
Object Model) Events standard [19], rich web applications
[18], commercial MP3 players [25], and a ticket gate system
for transportation companies [14].

Kuhn et al. [16] investigated the fault detection e↵ectiveness
of t-way testing; their result showed that t-way testing with
small interaction strength t ( 4) can e�ciently detect most
interaction failures while significantly reducing the number
of test cases compared to exhaustive testing, which tests all
parameter-value combinations. Other studies [2], [8], [25] also
supported the result by Kuhn et al. [16].

On the other hand, as far as we know, the only work by
Giannakopoulou et al. [10] reported the e↵ectiveness of t-
way testing on code coverage. They compared code coverage
between their model-checker based exhaustive testing and
3-way testing with two program modules for a NASA air
transportation system.

Code coverage, which measures what percentage of source
code is executed by a test suite, has been considered as one of
the most important coverage metrics for software testing and
is required by many industrial software development standards
(e. g. [1]). Therefore, the code coverage e↵ectiveness of t-way

testing would be of big interest to practitioners who consider
applying t-way testing to their software testing.

Note that t-way testing is a black-box testing and thus is
di�cult to achieve 100% code coverage and its code coverage
depends on the system under test (SUT) model, e. g. parameters
and their values, designed for t-way testing. Therefore, in order
to evaluate the code coverage e↵ectiveness of t-way testing,
we compare code coverage obtained by t-way testing with that
by exhaustive testing, similarly to [10].

In order to quantitatively analyze the code coverage e↵ec-
tiveness of t-way testing compared to exhaustive testing, we
set up the following two research questions:
• RQ1: How high code coverage can t-way testing achieve

compared to exhaustive testing? Can t-way testing obtain
higher code coverage earlier compared to exhaustive
testing? How large interaction strength t is necessary for
t-way testing to achieve the code coverage close to that
by exhaustive testing?

• RQ2: With the same number of test cases, how di↵erent
are t-way testing and exhaustive testing on code coverage?

For evaluating the code coverage e↵ectiveness of t-way
testing, RQ1 compares t-way testing and exhaustive testing
in their original sizes, while RQ2 compares t-way testing and
exhaustive testing in the same sizes.

To answer the above research questions, we perform a case
study that analyzes t-way test suites with 1  t  4 on two kinds
of widely used code coverage; line coverage (i. e., statement
coverage) and branch coverage (i. e., decision coverage). For
an empirical case study, we use seventeen versions of three
C program projects, flex, grep, and make, from the Software-
artifact Infrastructure Repository (SIR) [7]. To prepare t-way
test suites, we first construct SUT models with constraints
from test plans in Test Specification Language (TSL) [21]
of the repository. We next generate t-way test suites for the
SUT models using two state-of-the-art t-way test generation
tools, ACTS [3], [26] and PICT [6], [31]. We evaluate the
code coverage e↵ectiveness of t-way testing by comparing the
t-way test suites and exhaustive test suites on the examining
line coverage and branch coverage with test suite sizes.

Paper Organization: Section II-A explains combinatorial
t-way testing and Section II-B describes related work on
the e↵ectiveness evaluation of t-way testing. Section III
describes our experimental setting, and Section IV explains
experimental results which answer the research questions.
Section V concludes this paper.

QuASoQ 2016 Workshop Preprints

34

TABLE I
An example SUT model.

Parameter Values

Debug mode (= p1) on, o↵
Bypass use (= p2) on, o↵
Fast scanner (= p3) FastScan (= 1), FullScan (= 2), o↵

Constraint:
(Fast scanner = FullScan) ! (Bypass use , on)

TABLE II
An example of all possible pairs of parameter-values.

Param. pairs Parameter-value pairs

(p1, p2) (on, on), (on, o↵), (o↵, on), (o↵, o↵)
(p1, p3) (on, 1), (on, 2), (on, o↵), (o↵, 1), (o↵, 2), (o↵, o↵)
(p2, p3) (on, 1), (on, o↵), (o↵, 1), (o↵, 2), (o↵, o↵)

II. Background and RelatedWork
A. Combinatorial t-way Testing

The System Under Test (SUT) for combinatorial testing
is modeled from parameters, their associated values from
finite sets, and constraints between parameter-values. For
instance, the SUT model shown in Table I, has three parameters
(p1, p2, p3); the first two parameters have two possible values
and the other has three possibilities. Constraints among
parameter-values exist when some parameter-value combina-
tions cannot occur. The example SUT has a constraint such
that p2 , on if p3 = 1, i. e., the combination of p2 = on and
p3 = 1 is not allowed.

More formally, a model of an SUT is defined as follows:

Definition 1 (SUT model). An SUT model is a triple hP,V, �i,
where

• P is a finite set of parameters p1, . . . , p|P|,
• V is a family that assigns a finite value domain V

i

for

each parameter p

i

(1  i  |P|), and

• � is a constraint on parameter-value combinations.

A test case is a value assignment for the parameters that
satisfies the SUT constraint. For example, a 3-tuple (p1 =on,

p2 =on, p3 =1) is a test case for our example SUT model. We
call a sequence of test cases a test suite.

An exhaustive test suite (i. e. all combination test suite) is
a sequence of all possible test cases, i. e., a test suite that
covers all parameter-value combinations satisfying the SUT
constraint. In general, exhaustive testing is impractical since it
stipulates to test all possible test cases and thus its size (the
number of test cases) increases exponentially with the number
of parameters.

Combinatorial t-way testing (e. g., pairwise, when t = 2)
alternatively stipulates to test all t-way parameter-value combi-
nations satisfying the SUT constraint at least once. We call t

an interaction strength. An exhaustive test suite corresponds
to a t-way test suite with t = |P|.
Definition 2 (t-way test suite). Let hP,V, �i be an SUT model.

TABLE III
A 2-way test suite T1.

p1 p2 p3

1 on on 1
2 on o↵ o↵
3 o↵ o↵ 1
4 o↵ on o↵
5 o↵ o↵ 2
6 on o↵ 1

TABLE IV
An exhaustive test suite T2.

p1 p2 p3

1 on on 1
2 on on o↵
3 on o↵ 1
4 on o↵ 2
5 on o↵ o↵
6 o↵ on 1
7 o↵ on o↵
8 o↵ o↵ 1
9 o↵ o↵ 2

10 o↵ o↵ o↵

TABLE V
Related work.

Metrics studied

Code coverage Fault detection

Kuhn et al. (2004) [16] X
Zhang et al. (2012) [25] X
Petke et al. (2015) [22] X
Henard et al. (2015) [11] X

Choi et al. (2016) [4] X
Giannakopoulou et al. (2011) [10] X

This paper X

We say that a tuple of t (1  t  |P|) parameter-values is

possible i↵ it does not contradict the SUT constraint �. A

t-way test suite for the SUT model is a test suite that covers

all possible t-tuples of parameter-values in the SUT model.

Example 1. Consider the SUT model in Table I and t = 2.

There exist 15 possible t-tuples (pairs) of parameter-values, as

shown in Table II. The test suites T1 in Table III is a 2-way

(pairwise) test suite since it covers all the possible parameter-

value pairs in Table II. T2 in Table IV is a 3-way test suite

and corresponds to the exhaustive test suite since the number

of parameters in the example model is three .

Many algorithms to e�ciently construct t-way test suites
have been proposed so far. Approaches to generate t-way
test suites for SUT models with constraints include greedy
algorithms (e. g., AETG [5], PICT [6], [31], and ACTS [3],
[26]), heuristic search (e. g., CASA [9], HHSA [12], and
TCA [17]), and SAT-based approaches (e. g., Calot [23], [24]).

B. Related Work: E↵ectiveness evaluation of t-way testing

The e↵ectiveness of t-way testing with small interaction
strength t on fault detection have been reported by several
empirical studies so far [13], [15], but the code coverage of
t-way testing has not been studied well. Table V summarizes
the e↵ectiveness metrics studied in related work.

Kuhn et al. [16] investigated parameter interactions inducing
actual failures of four systems; a software for medical devices,
a browser, a server, and a database system. As a result, 29–68%
of the faults involved a single parameter; 70–97% (89–99%)
of the faults involved up to two (three) parameter interactions;
96–100% of the faults involved up to four and five parameter

QuASoQ 2016 Workshop Preprints

35

interactions; no fault involved more than six parameters. From
the result, the authors concluded that most failures are triggered
by parameter interactions with small t (at most four to six)
and thus t-way testing with 4  t  6 could provide the fault
detection ability of “pseudo-exhaustive” testing.

Zhang et al. [25] also explored that failures of actual
commercial MP3 players are triggered by t-way parameter
interactions with at most t = 4.

Petke et al. [22] more thoroughly studied the e�ciency of
early fault detection by t-way testing with 2  t  6. They
used six projects, flex, make, grep, gzip, nanoxml, and siena,
from the Software artifact Infrastructure Repository (SIR) and
showed the number of faults detected after 25%, 50%, 70%,
and 100% of test cases are executed.

Henard et al. [11] used five projects, grep, sed, flex, make,
and gzip, also from SIR and compared the number of faults
detected by test suite prioritization with t-way coverage (2 
t  4) and other black-box and white-box prioritization.

Choi et al. [4] used three projects, flex, grep, and make,
from SIR and investigated a correlation of the fault detection ef-
fectiveness with two evaluation metrics, called weight coverage
and KL divergence, for prioritized t (= 2)-way testing.

To our knowledge, the only work by Giannakopoulou et
al. [10] reported code coverage of t-way testing. Their target
system is a component of the Tactical Separation Assisted
Flight Environment (TSAFE) of the Next Generation Air
Transportation System (NextGen) by the NASA Ames Research
Center. In their work, t (= 3)-way testing and their model-
checker (JPF [30]) based exhaustive testing are compared
w. r. t. code coverage; line coverage, branch coverage, loop
coverage, and strict condition coverage, which are computed
using CodeCover [28].

Giannakopoulou et al. reported that for two program mod-
ules, the di↵erences of code coverage by 3-way testing and
exhaustive testing are 0–2% for the four coverage metrics they
used, while the numbers of test cases are 6,047 for 3-way
testing but 9.9 ⇥ 106 for exhaustive testing. In this paper, we
more thoroughly analyze the code coverage e↵ectiveness of
t-way testing with 1  t  4 using three open source utility
programs.

III. Experiments

A. Subject Programs

To investigate code coverage of t-way testing, we use three
open source projects of C programs, flex, grep, and make,
from the Software artifact Infrastructure Repository (SIR) [32].
flex is a lexical analysis generator. grep is a program to search
for text matching regular expressions. make is a program to
control the compile and build process. The programs have
been widely used to evaluate testing techniques by researchers
in studies including [4], [11], [22]. Table VI shows for each
version of programs we use, the version identifier, the year
released, and the lines of code (LoC) calculated using cloc [27].

TABLE VI
Subject programs.

Proj. Ver. Identifier Year of release LoC

flex

v0 2.4.3 1993 10,163
v1 2.4.7 1994 10,546
v2 2.5.1 1995 13,000
v3 2.5.2 1996 13,048
v4 2.5.3 1996 13,142
v5 2.5.4 1997 13,144

grep

v0 2.0 1996 8,163
v1 2.2 1998 11,945
v2 2.3 1999 12,681
v3 2.4 1999 12,780
v4 2.4.1 2000 13,280
v5 2.4.2 2000 13,275

make

v0 3.75 1996 17,424
v1 3.76.1 1997 18,525
v2 3.77 1998 19,610
v3 3.78.1 1999 20,401
v4 3.79.1 2000 23,188

Parameters:

...

Debug mode: # -d

Debug_on.

Debug_off.

Bypass use: # -Cr

Bypass_on. [property Bypass]

Bypass_off.

Fast scanner: # -f, -Cf

FastScan. [property FastScan]

FullScan. [if !Bypass][property FullScan]

off. [property f&Cfoff]

...

Fig. 1. A part of the test plan for flex in TSL.

B. Subject Test Suites

1) SUT Models: For each project, flex, grep, and make, we
construct an SUT model for t-way testing whose parameters,
values, and constraints are fully extracted from the test plan in
TSL (Test Specification Language), which is included in SIR.
For example, Figure 1 shows a part of the test plan in TSL for
project flex. From the TSL specification, we construct the SUT
model for flex whose parameters include Debug mode(= p1),
Bypass use(= p2) and Fast scanner(= p3), p2 has two values
including Bypass on(= on), p3 has three values including
FullScan(= 2), and constraints include (p3 = 2)! (p2 , on).
Table I corresponds to a part of the SUT model for flex, which
is constructed from the part of the test plan in Figure 1.

Table VII shows the size of the SUT model constructed
for each project. In the table, the size of parameter-values is
expressed as k; g

k1
1 g

k2
2 . . . g

k

n

n

, which indicates that the number of
parameters is k and for each i there are k

i

parameters that have
g

i

values. The size of constraints is expressed as l; l

h1
1 l

h2
2 . . . l

h

m

m

,
which indicates that the constraint is described in conjunctive
normal form (CNF) with l variables whose Boolean value

QuASoQ 2016 Workshop Preprints

36

TABLE VII
Constructed SUT models.

Proj. Model size

flex

Parameter-values 29; 3234462

Constraints 97; 27122212422517269

grep

Parameter-values 14; 243143516191111131201

Constraints 87; 243332748751612412712813110

make

Parameter-values 22; 2231244526171

Constraints 79; 2526211221231243257269

TABLE VIII
Sizes and code coverage of exhaustive test suites.

Proj. Size Line coverage Branch coverage

flex 525
Avg. 0.7968 0.8544
Min. 0.7789 0.8151
Max. 0.8312 0.9316

grep 470
Avg. 0.4961 0.4948
Min. 0.4726 0.4746
Max. 0.5900 0.5826

make 793
Avg. 0.4543 0.5373
Min. 0.4234 0.5126
Max. 0.4726 0.5494

represents an assignment of a value to a parameter and for
each j there are h

j

clauses that have l

j

literals. For the example
SUT model in Figure 1, the size of parameter-values is 3; 2231

and the size of constraints is 2; 21.
2) Test Suites: We use t-way test suites with 1  t  4 that

are generated by ACTS [3], [26] and PICT [6], [31] for our
constructed SUT models with constraints. The tools ACTS and
PICT are state-of-the-art open source t-way test generation
tools developed by NIST (National Institute of Standards and
Technology) and Microsoft, respectively. For comparison, we
also use exhaustive test suites each of which obtains all possible
test cases. The exhaustive test suite for the test plan of each
project is included in SIR.

3) Evaluation Metrics: To evaluate code coverage of each
test suite, we analyze the following two kinds of code coverage,
which are computed using gcov [29]:
• Line coverage: the percentage of program lines executed.
• Branch coverage: the percentage of branches of conditional

statements executed.
gcov is a source code analysis tool, which is a standard utility
delivered with the GNU C/C++ Compiler and reports how
many lines and branches are executed.

IV. Results
Table VIII shows the size, i. e. the number of test cases,

and the code coverage (line coverage and branch coverage) of
the exhaustive test suite for each project, while Table IX and
Table X show those of the subject t-way test suites (1  t  4)
generated by ACTS and PICT. Table IX shows the sizes of the
subject t-way test suites with the ratio of them over the sizes of
exhaustive test suites. Table X summarizes line coverage and
branch coverage of the subject t-way test suites for each project.

Line Branch

●

● ● ●

●●●●

●

●

●
●

0.96

0.97

0.98

0.99

1.00

1−way 2−way 3−way 4−way 1−way 2−way 3−way 4−way

Fig. 2. Ratio of code coverage of t-way testing (1  t  4) over that of
exhaustive testing for all versions of projects.

Line Branch

0.2

0.3

0.4

0.5

0 100 200 300 400 0 100 200 300 400
Test cases

1−way
2−way
3−way
4−way
Exhaustive

Fig. 3. Example code coverage growths of t-way testing (1  t  4) and
exhaustive testing for one version (v1) of grep.

In Table VIII and Table X, we show the average, minimum,
and maximum values of code coverage for versions of each
project.

For example, for project flex, the sizes of 2-way test suites
(52 by ACTS and 51 by PICT) are less than 10% of the size
of the exhaustive test suite (525) from Table VIII and Table IX.
On the other hand, for flex, line coverage and branch coverage
of 2-way test suites (the exhaustive test suite) are on average
0.7927 (0.7968) and 0.8522 (0.8544) from Table VIII and
Table X.

A. RQ1: t-way testing vs. exhaustive testing

To compare the code coverage between t-way testing and
exhaustive testing, we investigate the following metric

R

Cov

(T
t

, EX) = Cov(T
t

) / Cov(EX),

which denotes the ratio of code coverage of t-way test suite
T

t

over that of exhaustive test suite EX.
Table XI summarizes the values of R

Cov

(T
t

, EX) with 1  t 
4 for line coverage and branch coverage for each project and

QuASoQ 2016 Workshop Preprints

37

TABLE IX
Sizes of t-way test suites (1  t  4).

Proj. # of test cases (ratio over # of the exhaustive test cases)

1-way 2-way 3-way 4-way

flex

ACTS 30 (5.71 %) 52 (9.90 %) 91 (17.33 %) 155 (29.52 %)
PICT 30 (5.71 %) 51 (9.71 %) 90 (17.14 %) 154 (29.33 %)

grep

ACTS 40 (8.51 %) 76 (16.17 %) 183 (38.94 %) 328 (69.79 %)
PICT 40 (8.51 %) 77 (16.38 %) 180 (38.30 %) 326 (69.36 %)

make

ACTS 27 (3.40 %) 34 (4.29 %) 44 (5.55 %) 68 (8.58 %)
PICT 27 (3.40 %) 34 (4.29 %) 45 (5.67 %) 69 (8.70 %)

TABLE X
Code coverage of t-way test suites (1  t  4).

Proj. Line coverage Branch coverage

1-way 2-way 3-way 4-way 1-way 2-way 3-way 4-way

flex

Avg. 0.7683 0.7927 0.7934 0.7931 0.8407 0.8522 0.8522 0.8522
Min. 0.7481 0.7755 0.7763 0.7755 0.8018 0.8136 0.8136 0.8136
Max. 0.8145 0.8264 0.8267 0.8267 0.9225 0.9281 0.9281 0.9281

grep

Avg. 0.4917 0.4959 0.4961 0.4961 0.4769 0.4880 0.4933 0.4948
Min. 0.4668 0.4723 0.4726 0.4726 0.4549 0.4676 0.4712 0.4746
Max. 0.5875 0.5897 0.5900 0.5900 0.5726 0.5786 0.5845 0.5826

make

Avg. 0.4451 0.4539 0.4540 0.4540 0.5321 0.5364 0.5366 0.5366
Min. 0.4168 0.4230 0.4230 0.4230 0.5053 0.5117 0.5117 0.5117
Max. 0.4628 0.4724 0.4724 0.4726 0.5442 0.5484 0.5484 0.5484

TABLE XI
Comparison of code coverage between t-way testing (1  t  4) and exhaustive testing.

Proj. Line coverage Branch coverage

1-way 2-way 3-way 4-way 1-way 2-way 3-way 4-way

flex 96.41 % 99.49 % 99.58 % 99.54 % 98.40 % 99.74 % 99.74 % 99.74 %
Avg. of R

Cov

(T
t

, EX) grep 99.11 % 99.95 % 100.00 % 100.00 % 96.32 % 98.58 % 99.67 % 100.00 %
(R = Cov(T

t

)/Cov(EX)) make 97.97 % 99.91 % 99.93 % 99.92 % 99.03 % 99.84 % 99.88 % 99.87 %
Avg. 97.82 % 99.77 % 99.83 % 99.81 % 97.85 % 99.36 % 99.76 % 99.87 %

flex 0 / 12 8 / 12 8 / 12 8 / 12 0 / 12 12 / 12 12 / 12 12 / 12
(R � 99.5 %) grep 4 / 12 12 / 12 12 / 12 12 / 12 0 / 12 0 / 12 7 / 12 12 / 12
/ # all cases make 0 / 10 10 / 10 10 / 10 10 / 10 0 / 10 10 / 10 10 / 10 10 / 10

Total 4 / 34 30 / 34 30 / 34 30 / 34 0 / 34 22 / 34 29 / 34 34 / 34

all projects. In the table, we also show the numbers of cases
where R

Cov

(T
t

, EX) � 99.5%, i. e. t-way testing achieves more
than 99.5% of the coverage obtained by exhaustive testing,
over the numbers of all cases (versions) for projects.

Figure 2 presents the box plots for the results of R

Cov

(T
t

, EX)
for all projects. Each box plot shows the mean (circle in the
box), median (thick horizontal line), the first/third quartiles
(hinges), and highest/lowest values within 1.5 ⇥ the inter-
quartile range of the hinge (whiskers).
• How high code coverage can t-way testing achieve

compared to exhaustive testing?
From Table XI and Figure 2, we can see that t-way testing

with even small t can achieve high values of R

Cov

(T
t

, EX),
i. e. high ratios of code coverage over the code coverage of
exhaustive testing.

In the result of our case study, 1-way (2-way) testing covers
avg. 97.82% (99.77%) of line coverage of exhaustive testing and

avg. 97.85% (99.36%) of branch coverage of exhaustive testing.
With 3-way (4-way) testing, line coverage is avg. 99.83%
(99.81%) and branch coverage is avg. 99.76% (99.87%) of the
coverage of exhaustive testing.
• Can t-way testing obtain higher code coverage earlier

compared to exhaustive testing?
Figure 3 shows example line coverage growths and branch

coverage growths of t-way test suites (1  t  4) and the
exhaustive test suites for one version (v1) of project grep. (The
coverage growths represent the typical cases of our experiment
results.) We can see that t-way testing with smaller t obtains
higher code coverage earlier compared to exhaustive testing
and t-way testing with larger t.

For the example case in Figure 3, to obtain 48% line coverage
(46% branch coverage), 1-way, 2-way, 3-way, and 4-way testing
respectively require 35, 42, 56, and 56 (36, 47, 71, and 71) test
cases, while exhaustive testing requires 219 (265) test cases.

QuASoQ 2016 Workshop Preprints

38

Line Branch

● ●

●

●

●
●

●

●

1.0

1.1

1.2

1.3

1−way 2−way 3−way 4−way 1−way 2−way 3−way 4−way

Fig. 4. Ratios of code coverage of t-way testing (1  t  4) over that of
exhaustive testing with the same sizes for all versions of projects.

• How large t is necessary for t-way testing to achieve the
code coverage close to that by exhaustive testing?

Surprisingly, as the result of our case study, all t-way test
suites with 1  t  4 obtain more than 95% of code coverage
of exhaustive test suites. Especially, for project grep, 4-way
test suites obtain the same line coverage and branch coverage
with the exhaustive test suite. As described in Table XI, in
30 cases of all 34 cases, 2-way, 3-way, and 4-way test suites
achieve more than 99.5% of line coverage of exhaustive test
suites. For branch coverage, in all cases, 4-way test suites
achieve more than 99.5% of coverage of exhaustive test suites.

From the results, t-way testing with small t (1  t 
4) can e�ciently obtain code coverage close to that by

exhaustive testing while requiring smaller test cases.

B. RQ2: t-way testing vs. exhaustive testing in the same sizes

To compare the code coverage between t-way testing and
exhaustive testing with the same sizes, we investigate the
following metric

R

Cov

(T
t

, EX⇤) = Cov(T
t

) / Cov(EX⇤),
which denotes the ratio of code coverage of t-way test suite T

t

over that of a subset, hereafter denoted by EX⇤, of exhaustive
test suite EX whose size is same with T

t

. In our experiments,
we constructed EX⇤ 100 times by randomly selecting |T

t

| test
cases from exhaustive test suite EX and use the average value
of the code coverage for the 100 EX⇤.

Table XII summarizes the values of R

Cov

(T
t

, EX⇤) with 1 
t  4 for line coverage and branch coverage for each project
and all projects. In the table, we also show the numbers of
cases where R

Cov

(T
t

, EX⇤) � 105%, i. e. t-way testing achieves
more than 105% of the coverage obtained by exhaustive testing
with the same size, over the numbers of all cases for projects.
Figure 4 presents the box plots for the results of R

Cov

(T
t

, EX⇤)
for all projects.

• With the same number of test cases, how di↵erent are
t-way testing and exhaustive testing on code coverage?

From Table XII and Figure 4, we can see that t-way test
suites with 1  t  4 achieve higher line coverage and branch
coverage compared to exhaustive test suites in the same sizes.
Especially, t-way testing with smaller t obtains higher values
of R

Cov

(T
t

, EX⇤), i. e. higher ratios of code coverage over that
of exhaustive testing in the same size.

As described in Table XII, for all cases, 1-way and 2-way
testing achieve more than 105% of code coverage of exhaustive
testing with the same size. For 3-way and 4-way testing, the
numbers of cases that achieve more than 105% of line (branch)
coverage of exhaustive testing with the same sizes are 24 and
20 (24 and 16) cases among all 34 cases.

From the results, t-way testing with smaller t can obtain

higher code coverage compared to exhaustive testing with

the same number of test cases.

V. Conclusion
This paper analyzes the code coverage e↵ectiveness of

combinatorial t-way testing with small t. As a result of our
empirical evaluation using a collection of open source utility
programs, t-way testing with small t (1  t  4) e�ciently
covers more than 95% of code coverage achieved by exhaustive
testing, while requiring much smaller test cases. In addition,
comparing in the same test suite sizes, t-way testing with
smaller t obtains higher ratio of code coverage over that by
exhaustive testing.

In this paper, we evaluate two kinds of widely used code
coverage metrics, line coverage and branch coverage. Further
work includes evaluating other metrics such as loop coverage,
condition coverage, etc. Another further work is to investigate
both the code coverage e↵ectiveness and the fault detection
e↵ectiveness of t-way testing and analyze the relation between
them on real software projects.

Acknowledgments
The authors would like to thank anonymous referees for

their helpful comments and suggestions to improve this paper.
This work was partly supported by JSPS KAKENHI Grant
Number 16K12415.

References
[1] International Standardization Organization, ISO26262: Road vehicles -

Functional safety, November 2011.
[2] K. Z. Bell and M. A. Vouk. On e↵ectiveness of pairwise methodology

for testing network-centric software. In Proc. of International Conference

on Information and Communication Technology, pages 221–235. IEEE,
2005.

[3] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial
testing of ACTS: A case study. In Proc. of the 5th International

Conference on Software Testing, Verification and Validation (ICST),
pages 591–600. IEEE, 2012.

[4] E. Choi, S. Kawabata, O. Mizuno, C. Artho, and T. Kitamura. Test
e↵ectiveness evaluation of prioritized combinatorial testing: a case study.
In Proc. of the International Conference on Software Quality, Reliability

& Security (QRS), pages 61–68. IEEE, 2016.

QuASoQ 2016 Workshop Preprints

39

TABLE XII
Comparison of code coverage between t-way testing (1  t  4) and exhaustive testing with the same sizes.

Proj. Line coverage Branch coverage

1-way 2-way 3-way 4-way 1-way 2-way 3-way 4-way

flex 116.45 % 117.26 % 114.45 % 111.04 % 116.65 % 116.12 % 113.65 % 110.57 %
Avg. of R

Cov

(T
t

, EX⇤) grep 109.93 % 108.39 % 105.36 % 103.31 % 111.26 % 110.44 % 107.36 % 104.94 %
(R⇤ = Cov(T

t

)/Cov(EX⇤)) make 106.63 % 106.45 % 106.11 % 105.36 % 105.99 % 105.80 % 105.51 % 104.85 %
Avg. 111.26 % 110.95 % 108.79 % 106.64 % 111.61 % 111.08 % 109.04 % 106.90 %

flex 12 / 12 12 / 12 12 / 12 12 / 12 12 / 12 12 / 12 12 / 12 12 / 12
(R⇤ � 105 %) grep 12 / 12 12 / 12 2 / 12 2 / 12 12 / 12 12 / 12 2 / 12 2 / 12
/ # all cases make 10 / 10 10 / 10 10 / 10 6 / 10 10 / 10 10 / 10 10 / 10 2 / 10

Total 34 / 34 34 / 34 24 / 34 20 / 34 34 / 34 34 / 34 24 / 34 16 / 34

[5] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach. IEEE Trans. Software Eng., 34(5):633–650, 2008.

[6] J. Czerwonka. Pairwise testing in the real world: Practical extensions
to test-case senarios. In Proc. of the 24th Pacific Northwest Software

Quality Conference, pages 419–430. Citeseer, 2006.
[7] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-

tation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[8] G. B. Finelli. NASA software failure characterization experiments.
Reliability Engineering & System Safety, 32(1):155–169, 1991.

[9] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical

Software Engineering, 16(1):61–102, 2011.
[10] D. Giannakopoulou, D. Bushnell, J. Schumann, H. Erzberger, and

K. Heere. Formal testing for separation assurance. Annals of Mathematics

and Artificial Intelligence, 63(1):5–30, 2011.
[11] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. Comparing

white-box and black-box test prioritization. In Proc. of the 38th

International Conference on Software Engineering (ICSE), pages 523–
534. ACM, 2016.

[12] Y. Jia, M. B. Cohen, M. Harman, and J. Petke. Learning combinatorial
interaction testing strategies using hyperheuristic search. In Proc. of the

37th International Conference on Software Engineering (ICSE), pages
540–550. IEEE/ACM, 2015.

[13] R. N. Kacker, D. R. Kuhn, Y. Lei, and J. F. Lawrence. Combinatorial test-
ing for software: An adaptation of design of experiments. Measurement,
46(9):3745–3752, 2013.

[14] T. Kitamura, A. Yamada, G. Hatayama, C. Artho, E. Choi, N. T. B. Do,
Y. Oiwa, and S. Sakuragi. Combinatorial testing for tree-structured test
models with constraints. In Proc. of the International Conference on

Software Quality, Reliability & Security (QRS), pages 141–150. IEEE,
2015.

[15] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to combinatorial

testing. CRC Press, 2013.
[16] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions

and implications for software testing. IEEE Trans. Software Eng.,
30(6):418–421, 2004.

[17] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang. TCA: An e�cient
two-mode meta-heuristic algorithm for combinatorial test generation.
In Proc. of the 30th International Conference on Automated Software

Engineering (ASE), pages 494–505. ACM/IEEE, 2015.
[18] C. Maughan. Test case generation using combinatorial based coverage

for rich web applications. PhD Thesis. Utah State University, 2012.
[19] C. Montanez, D. R. Kuhn, M. Brady, R. M. Rivello, J. Reyes, and M. K.

Powers. An application of combinatorial methods to conformance testing
for document object model events. NISTIR-7773, 2010.

[20] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing

Surveys, 43(2):11, 2011.
[21] T. J. Ostrand and M. J. Balcer. The category-partition method for

specifying and generating functional tests. Commun. ACM, 31(6):676–
686, 1988.

[22] J. Petke, M. Cohen, M. Harman, and S. Yoo. Practical combinatorial
interaction testing: Empirical findings on e�ciency and early fault
detection. IEEE Trans. Software Eng., 41(9):901–924, 2015.

[23] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E. Choi. Greedy
combinatorial test case generation using unsatisfiable cores. In Proc. of

the 31st International Conference on Automated Software Engineering

(ASE), pages 614–624. IEEE/ACM, 2016.
[24] A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa, and A. Biere.

Optimization of combinatorial testing by incremental SAT solving. In
Proc. of the 8th International Conference on Software Testing, Verification

and Validation (ICST), pages 1–10. IEEE, 2015.
[25] Z. Zhang, X. Liu, and J. Zhang. Combinatorial testing on id3v2 tags

of mp3 files. In Proc. of the 5th International Conference on Software

Testing, Verification and Validation (ICST), pages 587–590. IEEE, 2012.
[26] ACTS, Available: http://csrc.nist.gov/groups/SNS/acts/.
[27] cloc – Count Lines of Code, Available: http://cloc.sourceforge.net.
[28] CodeCover – an open-source glass-box testing tool, Available:

http://codecover.org.
[29] gcov – a test coverage program, Available:

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[30] JavaPathfinder, Available: http://babelfish.arc.nasa.gov/trac/jpf.
[31] Pairwise Independent Combinatorial Tool, Available:

http://github.com/Microsoft/pict.
[32] Software-artifact Infrastructure Repository, Available: http://sir.unl.edu/.

QuASoQ 2016 Workshop Preprints

40

Sustainability Profiling of
Long-living Software Systems

Ahmed D. Alharthi, Maria Spichkova and Margaret Hamilton
RMIT University, Melbourne, Australia

Email: {ahmed.alharthi, maria.spichkova,margaret.hamilton}@rmit.edu.au

Abstract—This paper introduces a framework for software
sustainability profiling. The goal of the framework is to analyse
sustainability requirements for long-living software systems, fo-
cusing on usability and readability of the sustainability profiles.
To achieve this goal, we apply a quantitate approach such as
fuzzy rating scale-based questionnaires to rank the sustainabil-
ity requirements, and the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) to analyse the results of
questionnaires and to provide a basis for system profiling.

The core profiling elements provided by our framework are
(1) a sustainability five-star rating, (2) visualisation of the five
sustainability dimensions as a pentagon graph detailing combina-
tion for individual, social, technical, economic and environmental
dimensions, and (3) a bar graph of overall sustainability level for
each requirement. To ensure sustainability, the proposed profiling
framework covers the five dimensions of sustainability to quantify
the sustainability of any software system not only during the
requirement gathering phase but also during maintenance phase
of software system lifecycle.

I. INTRODUCTION

Addressing the impacts of software systems on sustainabil-
ity is a first-class quality concern beside usability, safety and
security [1]. A number of studies showed that if a software
system is developed without taking sustainability requirements
into account, the system could have negative impacts on
individual, social, technology, economic, and environment
sustainability, cf. [2]–[5]. Environmental awareness is crucial
for software engineering, especially in the case of large-scale
systems having many thousands of users.

The analysis of system sustainability has to be initiated on
the requirements engineering (RE) phase [6], [7]. Based on
this idea, Becker et al. [8] emphasised that the importance of
identifying stakeholders whose outside interests are affected,
and the use of long-life scenarios techniques during require-
ments elicitation could forecast potential impacts. Duffy [9]
highlighted that sustainability could be achieved especially
in the social dimension through usability, which is a non-
functional requirement, and its traditional methodologies.

This question is especially important for long-living sys-
tems, where the stakeholders requirements and preferences
might change over the time the system is in use. For example,
a system that can be seen as sustainable today, might be
rated as environmentally unsustainable in few years, while
new techniques to increase environmental sustainability are
developed. To solve this problem, we require an easy-to-use
profiling framework based on quantitate approaches that would
allow to analyse the up-to-date system sustainability profiles,

based on system characteristics and the up-to-date ratings
(quotations) of the corresponding requirements. Usability and
readability of the approach is crucial to make it applicable
for real software development processes, as the quotation
process and the generated profiles have to be easy-to-use by
all stakeholders.

Contributions: To ensure the sustainability of long-living
software systems over their eitire live-cycle, we propose a
framework for sustainability profiling. The framework allows
to analyse sustainability requirements for long-living software
systems. The up-to-date profiles could be generated both
during the RE and the maintenance phase of the software
system lifecycle. The framework workflow is presented in
Figure 1. First of all, stakeholders are assigned to a group
to rate requirements from the different perspective of sus-
tainability dimensions (individual, social, technical, economic
and environmental). Then, a fuzzy rating scale is used to
avoid imprecision for answering quantitative questionnaires
[10]. As the next step, the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS, cf. [11]) is utilised
to find alternatives that are the nearest distance from the
positive ideal solution and farthest distance from the negative
ideal solution. The software sustainability profiling includes
an overall picture of how sustainable a software system really
is. The profile is presented as three core elements: (1) a five-
star rating, (2) five dimensions of sustainability in a pentagon
graph, and (4) an overall measure of sustainability for each
requirement in a bar graph.

Outline: The rest of the paper is organised as follows. In
Section II we discuss the background and related work. Sec-
tion III introduces our framework for software sustainability
profiling. Section IV introduces an example scenario to show
how the framework can be used to profile software systems.
Section V summarises the core contributions of our work.

II. BACKGROUND AND RELATED WORK

In this section we discuss the research directions and
approaches that provide a background for our framework: RE
for sustainable systems, the idea of the sustainability profiling,
quantitative approaches, approaches using the fuzzy rating
scale, and the TOPSIS framework for requirements analysis.
We selected TOPSIS for our sustainability profiling frame-
work, as this technique has been successfully used for priori-
tising requirements and solving conflict among non-functional
requirements, cf. [11]–[13]. Previously, TOPSIS was used

QuASoQ 2016 Workshop Preprints

41

Fig. 1. Software Sustainability Profiling Framework

without taking into account the sustainability aspects, but the
extension to evaluate sustainability requirements is possible
and easy to implements. In the sustainability dimensions we
have the same kind of relations among requirements: (1) each
requirement has impacts on other requirements, and (2) each
requirement has positive or negative impacts on sustainability
dimensions that could be maximised or minimised during the
TOPSIS procedure.

A. Requirements engineering for sustainable systems

The RE phase of software development focuses on discover-
ing, developing, tracing, analysing, qualifying, communicating
and managing system requirements, cf. e.g., [14]. Lami et al.
[15] proposed to define a sustainable software process as one
which meets realistic sustainability objectives, taking into ac-
count not only direct but also indirect impacts of the software
on economy, society, human beings, and environment.

Penzenstadler [16] defined RE for sustainability as “the
concept of using requirements engineering and sustainable
development techniques to improve the environmental, social
and economic sustainability of software systems and their
direct and indirect effects on the surrounding business and
operational context”.

Sustainability in software has various dimensions. Goodland
[17] suggested to distinguish the following four dimensions:
human (individual), social, economic and environmental sus-
tainability. Penzenstadler and Femmer [5] as well as Razavian
et al. [18] added to the new dimension of technical sustain-
ability.

In our framework, we analyse the system sustainability
using the five dimensions:
• Individual sustainability: Individual needs should be

protected and supported with dignity and in a way that
developments should improve the quality of human life
and not threaten human beings;

• Social sustainability: Relationships of people within
society should be equitable, diverse, connected and demo-
cratic;

• Technical sustainability: Technology must cope with
changes and evolution in a fair manner, respecting natural
resources;

• Environmental sustainability: Natural resources have to
be protected from human needs and wastes; and

• Economic sustainability: A positive economic value and
capital should be ensured and preserved.

B. Sustainability Profiling

Sustainability profiling has been used mostly for software
energy and data centre consumption, as well as in cities
and urban settlements. James [19] highlighted that a holistic
and integrated understanding of urban life is essential. He
presented an urban profile framework for cities sustainability
including four main domains ecology, economics, politics
and culture as well as seven sub-domains for each main
domain. The framework was also applied to the sustainability
of eLearning by Stewart and Khare [20]. This framework was
providing a nine-point scale rating that is imprecise and has to
be extended to fit software development process and to cover
the corresponding sustainability dimensions.

Gmach et al. [21] proposed a profiling approach for the
sustainability of data centres, to quantify energy during design
and operation of data centres. Similarly, Jagroep et al. [22]
demonstrated a software energy profiling to analyse soft-
ware changes in energy consumption between releases of a
software product. Although both studies focused on energy
consumption that could impact environmental and economic
dimensions of sustainability, individual and social dimensions
were ignored in the measurement. Our approach covers the
five dimensions of sustainability to quantify the sustainability

QuASoQ 2016 Workshop Preprints

42

of any software system, starting from the requirements phase
and continuing over the phase of maintenance.

C. Quantitative Approach

Quantitative approaches are used to analyse data and to mea-
sure qualities in software engineering [23], [24]. For instance,
goal-oriented requirements and user experience are analysed
and measured via quantitative techniques having a rating scale
of probability between satisfaction and denial of satisfaction.
The rating scales and data analysis techniques vary from one
quantitative approach to another. Some approaches use a five-
level Likert scale while others employ a nine-point scale to
present people’s attitudes by scaling their responses. Notably,
the Likert rating scales and the nine scales that are giving
a number of options are closed format. For example, if a
questionnaire has a closed five Likert scale, participants can
only express their opinion through one of the five choices.
These closed format options are imprecise, difficult to choose
between and limited. A solution to overcome drawbacks of
closed formatted scales are the fuzzy rating scale [10], cf.
Section II-D for more details.

The quantitate approaches can be applied to several types of
data, and the type of data to analyse might influence the choice
of the approach. Tullis and Albert [23] suggest to distinguish
the following four types of data:
• Nominal data is categorised or classification data, which

it is not in any particular order, e.g., gender or hair colour;
• Ordinal data is ordered classified data, but the differ-

ences between them are not meaningful, e.g., product and
movie ratings;

• Interval data is classified data where the difference
between two data items is meaningful, but without natural
zero points, e.g., temperature units;

• Ratio data is interval data with absolute zero, e.g., weight
and height.

To analyse sustainability requirements, we will create from the
provided by stakeholders ranking the corresponding ratio data.
This transformation will be done using TOPSIS, cf. Section
II-E. The ratio data will be then further explored to build the
system profile.

D. The Fuzzy Rating Scale

A fuzzy rating scale (FRS) allows the capturing of the
diversity of individual responses in questionnaires, also avoid-
ing imprecision while rating a questionnaire [10]. For our
sustainability profiling, stakeholders will be required to rate the
corresponding sustainability dimensions. For example, as an
alternative of stakeholders choice from a five classified rating
scale, they can select their range and extend it between a range
of two extreme poles.

To implement an FRS, we adopt the fuzzy rating scale
method proposed by Lubiano et al. [25]:
Step 1 Considering a representative rating on the bounded

interval;
Step 2 Determining a core response to be considered as fully

compatible;

Step 3 Determining a support response to be considered as
compatible to some extent; and

Step 4 Creating a trapezoidal fuzzy number from the two in-
tervals, which are linearly interpolated, as Tra(a, b, c, d),
where 0 ≤ a ≤ b ≤ c ≤ d ≤ 1.

Figure 2 presents an example on application the above method
to within our framework: The scale goes from 0 to 100%,
where 0 corresponds to the worst case (critical value), and 100
corresponds to the best case (green value). For simplicity, it is
also possible to use a scale from 0 to 1, where 1 corresponds
to 100%.

Step 1

Step 2

Step 3

Green
(Vibrant)

Green
(Vibrant)

Green
(Vibrant)

Green
(Vibrant)

Critical

Critical

Critical

Critical

0 0 0 0 0 0 0 0 0 0

Fig. 2. Fuzzy Rating Scale for Sustainability Profiling

E. TOPSIS

Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) is an effective technique to evaluate sus-
tainability requirements which change over time is utilising.
TOPSIS is one of the multiple criteria decision analysis
approaches to identify the best alternative that is nearest to
an ideal solution and farthest from negative ideal solution
[12]. The principles of TOPSIS are simple, and positive ideal
solutions and negative ideal solutions formed [26]. The benefit
criteria in the positive ideal solution are maximised, and the
cost criteria are minimised, while the cost criteria in the
negative ideal solution are maximised, and the benefit criteria
are minimised [11].

The following is the stepwise procedure of TOPSIS accord-
ing to Behzadian [11]:
Step 1 Construct normalised decision matrix rij

rij =
xij√∑m
i=1 x

2
ij

, for i = 1, · · · ,m, j = 1, · · · , n

(1)

QuASoQ 2016 Workshop Preprints

43

Step 2 Construct the weighted normalised decision matrix vij

vij = wirij (2)

where wi is the weight for j criterion.
Step 3 Determine the positive ideal (A∗) and the negative

ideal solutions (A
′
):

Positive ideal solutions

A∗ = {max(vij)|j ∈ J ;min(vij)|j ∈ J′} = {v∗1 , · · · , v∗n}
(3)

Negative ideal solutions

A
′
= {min(vij)|j ∈ J ;max(vij)|j ∈ J′} = {v

′

1, · · · , v
′

n}
(4)

Step 4 Calculate the separation measures:
The separation from positive ideal is

S∗ =

√√√√ n∑
j=1

(vij − v∗i)
2, i = {1, · · · ,m} (5)

Similarly, the separation from negative ideal is

S
′
=

√√√√ n∑
j=1

(vij − v
′

i)
2, i = {1, · · · ,m} (6)

Step 5 Calculate the relative closeness to the ideal solution
C∗i

C∗i =
S

′

(S∗ + S′)
, 0 < C∗i < 1, i = {1, · · · ,m} (7)

C∗i = 1 if Ai solution has the best condition,
C∗i = 0 if Ai solution has the worst condition.

III. FRAMEWORK FOR SUSTAINABILITY PROFILING

The general idea of the framework workflow is presented
in Figure 1. To measure the sustainability aspects of the
requirements, we adopted the FRS approach. Requirements
are rated against sustainability dimensions, which gives an
input to the TOPSIS procedure. The provided by TOPSIS
results will create a basis for sustainability profiling: using
these results, our framework determines (1) the sustainable
of each system requirement, (2) sustainability of the software
system as whole. This will be presented in a five-star rating
within each level of sustainability dimensions and the overall
sustainability of each requirement. The analytical approach
consists of the following five steps, cf. also Figure 1.

A. Assigning Stakeholders

Requirements engineers should assign stakeholders to one
of the three stakeholder groups having end-users, adminis-
trators, and developers and providers groups. For instance,
in eLearning systems the learner and instructor are in the
end-users group while ITs support could be assigned to the
administrator group.

B. Defining Questions

The framework will generate a questionnaire including
related questions (instructions) for each requirement with
regard to the sustainability dimensions and stakeholders
groups. Thus, for each requirement k questions will be
created, where 1 ≤ k ≤ 5. Each question should present a
single sustainability dimension perspective, which is covered
by the requirement, and have a form
Rate the influence of the requirement on the X sustainability,
where X is belongs to the set
{individual, social, technical, environmental, economic}.
The generated questionnaire can be further revised and
adapted by both requirements engineers and sustainability
experts, before continuing with the next step.

For example, requirement R1 has to have five questions,
covering each dimension of the sustainability.

C. Rating Requirements

Each stakeholder has to answer allotted question from vary
views of certain sustainability dimension by using the FRS.
For example, stakeholders, who are in the learners and instruc-
tors group, will answer two questions for each requirement:
from the individual and from the social sustainability point
of view. and another time for the social sustainability. Each
answer, also, will be in a form of trapezoidal fuzzy number
from the two intervals as Tra(a, b, c, d), where 0 ≤ a ≤ b ≤
c ≤ d ≤ 1.

D. Analysing Sustainability Using TOPSIS

After all stakeholders answered the questionnaire, the results
of the FRS approach become inputs for TOPSIS. The data will
be normalised and weighted according to Equations 1 and 2,
and after that the steps 3, 4 and 5 of TOPSIS need to be
applied twice:
• First round: Applying requirements as criteria to de-

termine overall sustainability within the separation of
requirements’ impacts for each requirement; and

• Second round: Applying sustainability dimensions as cri-
teria to analysis each dimension within all requirements
and overall sustainability rating for the software.

E. Generating Software Sustainability Profiling

The result of TOPSIS analysis including two rounds helps
to generate software sustainability profiling which is visualised
representing the result. The profiling includes:
• Sustainability five-star rating Presenting the average of∑

C∗ in the both rounds of sustainability dimensions and
requirements;

• Five sustainability dimensions Illustrating each dimen-
sion level combined in pentagon or bar graph (optional)
for the software having all rated requirements; and

• Bar graph Showing an overall sustainability for each
requirement.

An example of a sustainability profile for a software system,
which is created using the proposed framework, is presented
in the next section (cf. Figure 5).

QuASoQ 2016 Workshop Preprints

44

Fig. 3. Sustainability Profiling as a part of RE Activities

TABLE I
THE KEY CHART IN SOFTWARE SUSTAINABILITY PROFILING

Percentage % Colour Code Description
80-100 Dark green Green (Vibrant)
60-79 Light green Satisfactory
40-59 Yellow Basic
20-39 Orange Unsatisfactory

0-19 Red Critical

Considering a different information in the profiling, we
simplify and visualise the result by creating a key chart with
five categories as shown in Table I. This key chart includes
numeric variables in percentage, colour codes for visualisation,
and linguistic variables as a description.

Figure 3 demonstrates how the proposed framework can be
uses during the RE activities (we follow the definition of the
RE activities introduced by [27]–[30]):

• Requirements elicitation is the practice of understanding
and determining stakeholders’ needs and constraints.
To rate the sustainability requirements using the proposed
framework, at this phase two actions are necessary:
(A) the stakeholders have to be assigned, (B) the ques-
tionnaires have to be generated.
However, taking into account the long-living nature of the
system, re-iteration of these steps might be necessary on
the management phase, to ensure the sustainability over
the software system lifecycle: (A′) new stakeholders can
be assigned, (B′) the questionnaires can be updated.

• Requirements analysis is the practice of refining stake-
holders’ needs and constraints by defining the process,
data and object of the required system.
On this phase, we conduct the following steps of our
framework:
(C) the stakeholders rate the requirements, (D) the
sustainability of the system is analyses using TOPSIS,
(E) the sustainability profile is generated.
To ensure longevity of the system, these steps also can
be repeated during the management phase.

• Requirements specification is the practice of writing
down stakeholders’ needs and constraints, and this doc-
umentation should be unambiguous, complete, correct,
understandable, consistent, concise, and feasible.

The sustainability profile could be seen as one of the input
to the specification phase.

• Requirements validation is the practice of checking that
the specification captures users’ needs and constraints.
The proposed framework does not cover the validation
activities, which might be one of the future work direc-
tions.

• Requirements management is the practice of schedul-
ing, controlling changes and tracking requirements over
time. In the case of long-living systems, the management
activities are crucial to keep the software system sustain-
able. The steps (A)− (E) have to be repeated to provide
an up-to-date sustainability profile of the system.

IV. APPLICATION OF THE PROPOSED FRAMEWORK

Let us discuss an example scenario with five requirements
R1, . . . , R5. The aim of this scenario is to illustrate application
of the proposed framework, without going into the technical
details like generating of questions within real questionnaires.
In this scenario, we will go through all framework steps and
present the created sustainability profile as the final result.

A. Assigning Stakeholders

Let us assume that the requirements will be rated by ten
assigned stakeholders: four in the end-users group, three in
administrators group, and three in developers and providers
group.

B. Defining Questions

This step is omitted in the example, as the rating activities
will be simulated.

C. Rating Requirements

To simulate the rating activities where each stakeholder rates
requirements against sustainability dimensions by answering
defined questions, we generate random numbers between [0:1]
(0 corresponds to a critical value, 1 corresponds to a green
value) for the fuzzy rating scales. Figure 4 shows the results
of application of the FRS approach to the requirement R1,
from the prospective of ten assigned stakeholders.

As follows from Figure 4, Stakeholder S2, who is assigned
to individual and social sustainability dimensions, rates R1 for

QuASoQ 2016 Workshop Preprints

45

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 2

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 2

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 1

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 3

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 3

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 1

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 4

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 4

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 5

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 5

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 5

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 6

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 6

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 6

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 7

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 7

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 7

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 8

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 8

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 8

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 9

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 9

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 9

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 10

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 10

.0 10 20 30 40 50 60 70 80 90 100

Green
(Vibrant)

Critical

S 10

A Representative Rating

So
ci
al

Te
ch

ni
ca
l

Ec
on

om
ic

En
vi
ro
n­

m
en

t

In
di
vi
du

al
In
di
vi
du

al

In
di
vi
du

al

In
di
vi
du

al

So
ci
al

So
ci
al

So
ci
al

So
ci
al

So
ci
al

So
ci
al

Ec
on

om
ic

En
vi
ro
n­

m
en

t

Te
ch

ni
ca
l

Ec
on

om
ic

En
vi
ro
n­

m
en

t
Ec

on
om

ic
En

vi
ro
n­

m
en

t

Te
ch

ni
ca
l

Ec
on

om
ic

Ec
on

om
ic

En
vi
ro
n­

m
en

t
En

vi
ro
n­

m
en

t

Fig. 4. Example of Fuzzy Rating Scale for Requirement (R1)

TABLE II
OUTPUT EXAMPLES OF FUZZY RATING SCALE FOR REQUIREMENTS ANALYSIS

Dimension S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Individual 0.573 0.754 0.625 0.914
Social 0.276 0.727 0.087 0.917 0.377 0.942 0.066
Technical 0.579 0.808 0.324
Economic 0.158 0.446 0.340 0.345 0.362 0.529

R1

Environment 0.382 0.351 0.799 0.291 0.986 0.130
Individual 0.281 0.472 0.232 0.289
Social 0.096 0.587 0.605 0.301 0.660 0.455 0.407
Technical 0.925 0.677 0.309
Economic 0.093 0.506 0.738 0.567 0.459 0.395

R2

Environment 0.224 0.794 0.781 0.362 0.642 0.018
Individual 0.966 0.379 0.974 0.509
Social 0.030 0.331 0.170 0.717 0.835 0.128 0.909
Technical 0.173 0.157 0.728
Economic 0.182 0.001 0.473 0.050 0.366 0.504

R3

Environment 0.257 0.282 0.187 0.814 0.711 0.688
Individual 0.287 0.802 0.347 0.361
Social 0.012 0.376 0.318 0.976 0.785 0.381 0.808
Technical 0.583 0.667 0.320
Economic 0.163 0.417 0.547 0.599 0.360 0.821

R4

Environment 0.244 0.871 0.953 0.013 0.222 0.249
Individual 0.619 0.546 0.957 0.614
Social 0.600 0.005 0.460 0.003 0.977 0.535 0.518
Technical 0.215 0.995 0.943
Economic 0.244 0.072 0.328 0.251 0.349 0.610

R5

Environment 0.214 0.704 0.662 0.949 0.714 0.583

individual perspective as Tra(0.51, 0.66, 0.856, 1.00) while
social perspective as Tra(0.60, 0.66, 0.75, 0.9). We calculate
fuzzy values from each fuzzy rating by mean measurement,
so individual and social means of R1 for S2 are 0.754 and
0.727, respectively.

D. Analysing Sustainability

In the next step, all the FRS outputs become inputs for
TOPSIS, cf. Table II. These data are normalised according to
Equation 1 for the five system requirements R1, . . . , R5 within
the individual, social, technical, economic and environmental
dimensions of sustainability. The result of normalisation step
presented in Table III.

The weighted normalisation that was constructed according
to Equation 2 is showed in Table IV. Following the TOPSIS
procedure, we calculate for both rounds the separation mea-
sures from positive ideal S∗ and negative ideal solutions S

′
, as

well as the relative closeness C∗. The results are summarised
in Tables V and VI. Noteworthy, we could calculate the
negative impact of economic and environmental sustainability
dimensions via the negative ideal solution that maximises the
cost criteria and minimises the benefit criteria.

E. Sustainability Profiling

The generating software sustainability profiling is presented
in Figure 5 within an overall of 49% sustainability which is the
mean of

∑
C∗ in the two rounds (in Table V and VI). Among

QuASoQ 2016 Workshop Preprints

46

E
co

n
o

m
ic

Environmental
T

e
ch

n
ic

a
l

Social
In

divid
ual

Overall 10 30 50 70 90

Green (Vibrant)Green (Vibrant)

SatisfactorySatisfactory

BasicBasic
UnsatisfactoryUnsatisfactory

CriticalCritical

80 – 100 %80 – 100 %

60 – 79 %60 – 79 %

40 – 59 %40 – 59 %

20 – 39 %20 – 39 %

0 – 19 %0 – 19 %

0 0 .2 0 .4 0 .6 0 .8

R 1

R 2

R 3

R 4

R 5

Fig. 5. Sustainability Profile of a Software System using the default colour schema. To increase accessibility of our approach, we also provide another
colouring option for colour-challenged people. In this option the red colour is replaced by blue.

TABLE III
THE NORMALISATION DECISION (STEP 1) USING EQUATION 1

Dimensions R1 R2 R3 R4 R5
Individual 0.536 0.238 0.529 0.336 0.512

Social 0.462 0.423 0.425 0.498 0.422
Technical 0.444 0.496 0.275 0.408 0.559
Economic 0.421 0.533 0.304 0.562 0.358

Environment 0.431 0.414 0.431 0.374 0.561

TABLE IV
THE WEIGHTED NORMALISATION STEPS FROM EQUATION 2

Dimensions R1 R2 R3 R4 R5
Individual 0.146 0.033 0.166 0.063 0.126

Social 0.085 0.081 0.084 0.108 0.067
Technical 0.097 0.136 0.043 0.089 0.144
Economic 0.058 0.105 0.035 0.113 0.040

Environment 0.081 0.084 0.094 0.066 0.128

TABLE V
RESULTS OF THE STEPS 4 AND 5 IN THE FIRST ROUND

Dimensions S* S’ C*
Individual 0.0917 0.130 0.586

Social 0.143 0.118 0.452
Technical 0.134 0.137 0.505
Economic 0.132 0.104 0.440

Environment 0.093 0.151 0.617

TABLE VI
RESULTS OF THE STEPS 4 AND 5 IN THE SECOND ROUND

R1 R2 R3 R4 R5
S* 0.116 0.139 0.135 0.191 0.121
S’ 0.179 0.091 0.154 0.088 0.119
C* 0.607 0.394 0.533 0.317 0.497

the five requirements, R1 meets the highest level as satisfactory
as well as environmental dimensions. Also, individual, social,
technical and economic dimensions become basic as the lowest
level of software sustainability including the five requirements

in this example.

V. DISCUSSION AND CONCLUSIONS

In this paper, we introduced a framework for software sus-
tainability profiling. We also presented and example scenario
to provide a numerical illustration on how the framework can
be applied. The framework allows to create the following
profiling elements:

1) Sustainability five-star rating for overall sustainability
ranking of entire software requirements;

2) Visualisation of the five sustainability dimensions as a
pentagon graph (and, optionally, also a bar graph) for all
dimension levels of the entire software requirements; and

3) Bar graph for overall sustainability of each requirement.
In our framework we apply a quantitative approach to

measure sustainability of the software systems. The fuzzy
rating scale is utilised to overcome inexplicit choices in ques-
tionnaires and increase the usability of the framework. The
TOPSIS approach for requirements analysis is used to analyse
ranking within the best ideal solution and the worst ideal
solution among requirements that could assist to recognise the
positive and negative impacts on sustainability via maximising
or minimising the benefit or cost.

In the case of long-living systems, it is crucial to keep the
software system sustainable over the whole lifecycle of the
system. The stakeholders requirements and preferences might
change over the time the system is in use, and proposed frame-
work allows to analyse the up-to-date system sustainability
profiles, based on system characteristics and the up-to-date
ratings (quotations) of the corresponding requirements.

One of the core features of the framework is readability
of the sustainability profiles, which also implies the usability
of the proposed framework. For example, we apply the five-
star rating to present sustainability ratings, as this rating is
perceived as a common one in other areas: the five-star rating
has become a standard for electricity consumption labelling
in electronic appliances such as air conditioners and computer

QuASoQ 2016 Workshop Preprints

47

monitors, allowing an energy efficient choice by reducing
energy use and emissions (i.e., to increase environmental
sustainability).

We follow the traffic lights colouring schema, where crit-
ical values are marked red and green (vibrant) are marked
green to increase readability and graphic visualisation. These
colours and their descriptions have been used in Green IT and
Sustainability Developments. To increase accessibility of our
approach, we also provide another colouring option for colour-
challenged people, where the red colour is replaced by blue.
Finally, there are two options to present the five sustainability
dimensions as a pentagon or bar graph because it might be
argued that the pentagon graph could be harder to read and
need more effort to analyse represented data than the bar
graph, so we provide the bar graph option for representing
the five sustainability dimensions.

Future work: The main direction of our future work on
the proposed framework is to develop a tool for software
sustainability profiling, allowing to perform the framework
steps within a single platform. We also would like to apply
the proposed framework to our earlier work on the analysis
of the RE aspects of ELearning systems [31] as well as of
geographically distributed systems and within global product
development [32]–[34].

ACKNOWLEDGEMENT

The first author is supported by a scholarship from Umm
Al-Qura University, Saudi Arabia.

REFERENCES

[1] B. Penzenstadler, A. Raturi, D. Richardson, and B. Tomlinson, “Safety,
security, now sustainability: The nonfunctional requirement for the 21st
century,” Software, IEEE, vol. 31, no. 3, pp. 40–47, 2014.

[2] F. Berkhout and J. Hertin, “Impacts of information and communi-
cation technologies on environmental sustainability: Speculations and
evidence,” Report to the OECD, Brighton, vol. 21, 2001.

[3] P. Lago and T. Jansen, “Creating environmental awareness in service ori-
ented software engineering,” in Service-Oriented Computing. Springer,
2011, pp. 181–186.

[4] S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A
reference model for green and sustainable software and its engineering,”
Sustainable Computing: Informatics and Systems, vol. 1, no. 4, pp. 294–
304, 2011.

[5] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process- and product-specific instances,” in Proceedings of the 2013
Workshop on Green in/by Software Engineering, ser. GIBSE ’13. New
York, NY, USA: ACM, 2013, pp. 3–8.

[6] G. G. Calienes, “Requirements prioritization framework for developing
green and sustainable software using anp-based decision making,” 2013.

[7] B. Penzenstadler, “Infusing green: Requirements engineering for green
in and through software systems,” Christopher Arciniega, Birgit Penzen-
stadler TechReport UCI-ISR-14-2 June, 2014.

[8] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M. Easterbrook,
B. Penzenstadler, N. Seyff, and C. C. Venters, “Requirements: The key
to sustainability,” IEEE Software, vol. 33, no. 1, pp. 56–65, Jan. 2016.

[9] V. G. Duffy, Improving Sustainability through Usability. Cham:
Springer International Publishing, 2014, pp. 507–519.

[10] S. de la Rosa de Sáa, M. A. Gil, G. González-Rodrı́guez, M. T. López,
and M. A. Lubiano, “Fuzzy rating scale-based questionnaires and their
statistical analysis,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 1,
pp. 111–126, Feb 2015.

[11] M. Behzadian, S. K. Otaghsara, M. Yazdani, and J. Ignatius, “A
state-of the-art survey of TOPSIS applications,” Expert Systems with
Applications, vol. 39, no. 17, pp. 13 051 – 13 069, 2012.

[12] D. Mairiza, D. Zowghi, and V. Gervasi, “Utilizing TOPSIS: A Multi
Criteria Decision Analysis Technique for Non-Functional Requirements
Conflicts,” in RE, ser. Communications in Computer and Information
Science, D. Zowghi and Z. Jin, Eds. Springer, 2014, vol. 432, pp.
31–44.

[13] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “A system-
atic literature review of software requirements prioritization research,”
Information and Software Technology, vol. 56, no. 6, pp. 568 – 585,
2014.

[14] E. Hull, K. Jackson, and J. Dick, Requirements engineering. Springer
Science & Business Media, 2010.

[15] G. Lami, F. Fabbrini, and M. Fusani, Software Sustainability from
a Process-Centric Perspective, ser. Communications in Computer and
Information Science. Springer Berlin Heidelberg, 2012, vol. 301, ch.
Systems, Software and Services Process Improvement, pp. 97–108.

[16] B. Penzenstadler, Green in Software Engineering. Cham: Springer
International Publishing, 2015, ch. From Requirements Engineering to
Green Requirements Engineering, pp. 157–186.

[17] R. Goodland, “Sustainability: human, social, economic and environmen-
tal,” Encyclopedia of Global Environmental Change. John Wiley & Sons,
2002.

[18] M. Razavian, G. Procaccianti, D. A. Tamburri et al., “Four-dimensional
sustainable e-services,” EnviroInfo, Sep, 2014.

[19] P. James, Urban sustainability in theory and practice: circles of sustain-
ability. Routledge, 2014.

[20] B. Stewart and A. Khare, “elearning and the sustainable campus,” in
Transformative Approaches to Sustainable Development at Universities.
Springer, 2015, pp. 291–305.

[21] D. Gmach, Y. Chen, A. Shah, J. Rolia, C. Bash, T. Christian, and
R. Sharma, “Profiling sustainability of data centers,” in Proceedings of
the 2010 IEEE International Symposium on Sustainable Systems and
Technology, May 2010, pp. 1–6.

[22] E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti,
P. Lago, L. Blom, and R. van Vliet, “Software energy profiling:
Comparing releases of a software product,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 523–532.

[23] T. Tullis and B. Albert, Measuring the User Experience, 2nd ed., ser.
Interactive Technologies. Boston: Morgan Kaufmann, 2013.

[24] J. Horkoff and E. Yu, “Analyzing goal models: Different approaches
and how to choose among them,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. New York, NY,
USA: ACM, 2011, pp. 675–682.

[25] M. A. Lubiano, S. de la Rosa de Sa, M. Montenegro, B. Sinova, and
M. ngeles Gil, “Descriptive analysis of responses to items in question-
naires. why not using a fuzzy rating scale?” Information Sciences, vol.
360, pp. 131 – 148, 2016.

[26] J. R. S. C. Mateo, TOPSIS. London: Springer London, 2012, pp. 43–48.

[27] R. H. Thayer and M. Dorfman, Software Requirements Engineering.
Wiley-IEEE Press, 2000, ch. Introductions, Issues, and Terminology,
pp. 3–40.

[28] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A
roadmap,” in Proceedings of the Conference on The Future of Software
Engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp.
35–46.

[29] P. Sawyer, I. Sommerville, and S. Viller, “Requirements process im-
provement through the phased introduction of good practice,” Software
Process: Improvement and Practice, vol. 3, no. 1, pp. 19–34, 1997.

[30] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[31] A. D. Alharthi, M. Spichkova, and M. Hamilton, “Requirements en-
gineering aspects of elearning systems,” in Proceedings of the ASWEC
2015 24th Australasian Software Engineering Conference. ACM, 2015,
pp. 132–133.

[32] M. Spichkova and H. Schmidt, “Requirements engineering aspects of
a geographically distributed architecture,” in 10th International Con-
ference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2015), 2015.

[33] M. Spichkova, H. W. Schmidt, M. R. I. Nekvi, and N. H. Madhavji,
“Structuring diverse regulatory requirements for global product develop-
ment,” in Requirements Engineering and Law. IEEE, 2015, pp. 57–60.

[34] M. Spichkova, H. Liu, and H. Schmidt, “Towards quality-oriented
architecture: Integration in a global context,” in European Conference

on Software Architecture Workshops. ACM, 2015, p. 64.

QuASoQ 2016 Workshop Preprints

48

Improving Recall in Code Search by Indexing
Similar Codes under Proper Terms

Abdus Satter∗ and Kazi Sakib†
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: ∗bit0401@iit.du.ac.bd, †sakib@iit.du.ac.bd

Abstract—The recall of a code search engine is reduced,
if feature-wise similar code fragments are not indexed under
common terms. In this paper, a technique named Similarity Based
Method Finder (SBMF) is proposed to alleviate this problem. The
technique extracts all the methods from a source code corpus and
converts these into reusable methods (i.e., program slice) through
resolving data dependency. Later, it finds similar methods by
checking signature (i.e., input and output types) and executing
methods for a randomly generated set of input values. Methods
are considered as feature-wise similar if these produce the same
output set. In order to index these methods against common and
proper terms, SBMF selects the terms that are found in most
of the methods. Finally, query expansion is performed before
searching the index to solve the vocabulary mismatch problem. In
order to evaluate SBMF, fifty open source projects implementing
nine different functionalities or features were used. The results
were compared with two types of techniques - Keyword Based
Code Search (KBCS) and Interface Driven Code Search (IDCS).
On an average, SBMF retrieves 38% and 58% more relevant
methods than KBCS and IDCS, respectively. Moreover, it is
successful for all the features by retrieving at least one relevant
method representing each feature whereas IDCS and KBCS are
successful for 3 and 7 features out of 9 respectively.

Index Terms—code search, code reuse, method search

I. INTRODUCTION

The recall of a code search engine, indicated by the number
of relevant codes that is retrieved from the code repository,
usually depends on the indexing mechanism and query for-
mulation techniques. Proper indexing and query understanding
help to retrieve relevant code snippets that satisfy user needs
[1]. Most of the code search engines employ Information
Retrieval (IR) centric approaches for indexing source code
[2]. The working principle behind these approaches is to
construct a term-based index, by extracting keywords from
source codes. A common problem of these approaches is
that a pair of codes - having same functionality, but written
using different keywords are indexed against different terms.
A traditional code search engine misses some important code
fragments, because of this keyword matching policy. It results
in a low recall code search engine with poor performance on
benchmark datasets [3].

To improve recall of a code search engine, similar code
fragments should be indexed under the same terms. However,
it is challenging to automatically and efficiently determine
that two code fragments are identical or similar [4]. Although
identical code fragments can be detected through keywords
matching [5], detecting feature wise similar code blocks is

difficult. The reason is that automatically perceiving the intent
of a code block is still a research challenge [6]. Another chal-
lenge is to select proper terms that best represent similar code
fragments. For example, assume that there are two methods
that perform bubble sort - “x” and “sort”. Here, between two
terms, “sort” is semantically more relevant name than “x”. It
is a challenging task to automatically determine that “sort” is
the better keyword to represent these methods. Again, a code
fragment may contain terms, which are not useful to express
its intent (i.e., implemented feature) properly. Indexing based
on these keywords reduces matching probability between user
query and these keywords. It happens because, user query
defines functionality but the extracted keywords do not express
the feature properly. So, instead of using these keywords, more
meaningful terms need to be selected that best match the query.

Researchers have proposed various techniques to improve
the performance of code search engines where recall is con-
sidered as one of the performance indicators. These techniques
can be broadly classified into four types like Keyword Based
Code Search (KBCS), Interface Driven Code Search (IDCS),
Test Driven Code Search (TDCS), and Semantic Based Code
Search (SBCS). In KBCS [2], [7], [8], [9], [10], source codes
are indexed based on the terms generated from the code and
searching is performed on the index. As this approach does
not consider similarity between source codes having different
keywords, it cannot retrieve more relevant codes. In order to
define required component interface as query, and find relevant
components, IDCS [11], [12], [13] was proposed. It is possible
to have two or more code fragments that contain different
interfaces but perform the same task. IDCS considers that
these code fragments are different due to having different
interfaces. Thus, it does not retrieve these all together. To
automatically find and adapt reusable components, TDCS [14],
[15] and SBCS [16], [17] were proposed. These are effective in
terms of precision as test cases are employed on the retrieved
codes. In these approaches, most of the test cases fail not only
for functional requirements mismatch but also for syntactic
mismatch of the interface definition [15]. For this reason,
semantically relevant code fragments cannot be retrieved and
the recall is decreased.

In this paper a technique named Similarity Based Method
Finder (SBMF) is proposed to retrieve more relevant methods
from code base. The technique first parses all the methods
from the source code to construct a repository of methods.
It generates data dependency graph for each method and

QuASoQ 2016 Workshop Preprints

49

converts the method into reusable method (i.e., program slice)
through resolving data dependency, and redefining parameters
and return type. Later, all the methods are clustered into a
number of clusters where methods in the same cluster perform
the same task. To detect feature-wise similarity among a set
of methods’ signatures (i.e., parameters and return types) of
these methods are checked. Methods having the same signature
are then executed against a set of randomly generated input
values. Among these methods, those which produce the same
output are considered as feature-wise similar and a cluster is
constructed to store these methods. To identify proper terms
for a cluster, keywords are obtained from the methods in the
cluster and method frequency is calculated for each term.
Such terms are considered as representative terms if these
are found in most of the methods of the cluster. All the
methods of the cluster are then indexed against the terms so
that these are retrieved all together if a query term matches
one of these methods. At last, user query is expanded by
adding synonyms of each query term to increase the matching
probability between the query terms and index terms [7].

In order to evaluate the proposed technique, a tool was
developed. Two types of code search techniques, KBCS and
IDCS, were compared with SBMF to show its efficiency.
An existing system named Sourcerer [8] was used for the
implementation of KBCS and IDCS. However, SBCS and
TDCS were not considered for comparison, because these
were proposed to improve precision rather than recall. For
comparative result analysis, three metrics were used which
are recall, number of methods retrieved and feature successful-
ness. Here, feature successfulness determines whether at least
one relevant method is retrieved or not against user queries
provided for a feature. In the context of this paper, A feature
can be considered as a requirement given to a developer to
implement. 50 open source projects were selected to carry out
the experiment. The result analysis shows that on an average
SBMF increases recall by 38% and 58% more than KBCS
and IDCS, respectively against 170 queries. Besides, SBMF
is successful for all the features whereas KBCS and IDCS are
successful for 7 and 3 features out of 9 respectively.

II. RELATED WORKS

Reusing existing code fragments reduces development time
and effort [18]. For this reason, searching for reusable code
snippets has become a common task among the developers
during software development [19]. Various techniques have
been proposed in the literature to improve the performance
of code search engine in terms of recall, precision, query
successfulness, etc. These techniques can be broadly classified
into four categories which are Keyword Based Code Search
(KBCS), Interface Driven Code Search (IDCS), Semantic
Based Code Search (SBCS), and Test Driven Code Search
(TDCS). Significant works related to each category are dis-
cussed in the following subsections.

A. Keyword based Code Search (KBCS)

In KBCS, source code is considered as plain text document
where traditional IR centric approaches are employed to in-
dex the code and query over the index [20]. Besides, other
metadata such as comments, file name, commit message, etc.
are used to retrieve relevant code fragments from a repository
of source codes. One of the techniques related to KBCS
is JSearch which indexes source code against the keywords
extracted from the code [2]. However, it cannot retrieve all
the code snippets that implement the same feature but contain
different keywords. This is because, it does not check feature-
wise similarity to detect common terms for these fragments.

Several techniques like Sourcerer [8], Codifier [9], krugle
[10], etc. were proposed to provide infrastructure for large
scale code search. These techniques use both structural and
semantic information of source code to construct index. Struc-
tural information comprises language, source file, related doc-
uments, classes, methods, dependencies, and so on. Semantic
information of a program is gathered by generating terms
from method name, class name, field name, comments, etc.
Although these techniques adopt both types of information
to fetch more relevant code fragments, these cannot retrieve
feature-wise similar code blocks simultaneously. The reason
is that all these information are stored following IR based
indexing mechanism, and no checking is performed to index
similar code snippets under common proper terms.

B. Semantic Based Code Search (SBCS)

As open source codes are increasing day by day, it is thought
that a significant amount of code that is written today, has
already been available in the internet. However, reusing these
existing codes often does not directly meet user needs or
requires modifications. In order to find existing codes that
support user requirements, a technique in form of SBCS was
proposed by Steven [16]. It takes keywords that represent user
requirements, and retrieves relevant code fragments containing
these keywords. Later, it runs user provided test cases on
the fetched code snippets and passed codes are delivered as
final search result. It performs well in terms of precision but
recall is reduced since proper terms are not determined while
indexing feature-wise similar codes. So, some semantically
similar code fragments cannot be fetched due to indexing these
under inappropriate terms.

Sometimes, developers need to convert one type of ob-
ject to another. To get example code implementing such
conversion, Niyana proposed a technique named XSnippet
[17]. It creates graph from source code by adopting code
mining algorithm. The graph represents data flow within the
corresponding source code. Moreover, user query is defined
by providing input type and output type. For a user query,
all the generated graphs are searched to find those code
fragments that convert the input type into the output type.
In this technique. developers need to provide exact input type
and output type for getting example code blocks. Otherwise,
it cannot retrieve code fragments that may satisfy user needs.
However, according to the searching behavior, developers are

QuASoQ 2016 Workshop Preprints

50

more interested in using keywords rather than concrete data
types to define their query [21].

C. Test Driven Code Search (TDCS)

TDCS is a special type of SBCS where test cases are
used to obtain program semantics. Lemos et al. proposed a
TDCS technique named CodeGenie to support method level
searching [14]. The technique takes method signature as query
from the test cases written by developers. It uses Sourcerer
infrastructure to retrieve relevant functions against the query.
Next, all the test cases are executed for each retrieved method.
Resultant methods are ranked based on the number of test
cases successfully passed. Although the technique increases
precision, it produces low recall. The reason is that it per-
forms keyword matching to fetch methods from index without
justifying the appropriateness of the keywords.

Usually retrieved methods may not pass corresponding
test cases due to different order of the parameters, return
type or parameter type. To resolve these issues, Janjic et al.
proposed a technique that refactors the code to adapt with the
program context [15]. It applies every possible adaptations like
reordering parameters, using super type or sub class type of
a given return or parameter type, converting primitive type to
reference type, etc. Thus, it improves TDCS by finding more
relevant methods. However, it produces low recall because it
does not index similar methods under common terms.

D. Inreface Driven Code Search (IDCS)

IDCS helps the developers to define their queries in a more
structured form rather than just a set of keywords joined by
boolean expression. Signature matching was the first proposed
IDCS technique to find relevant functions within a software
library [13]. The approach crawls all the methods in the library,
and uses signature of each method for indexing. Other code
search techniques such as Sourcecer, ParseWeb, and Strath-
cona also support IDCS to improve the performance in code
search [7]. Although IDCS assists to formulate user query,
it does not select appropriate terms during indexing similar
codes that perform the same functionality. Thus, functionally
related code fragments will not be retrieved all together since
these are indexed against inappropriate terms.

In order to find reusable code fragments, four types of
techniques have been proposed in the literature which are
KBCS, IDCS, TDCS, and SBCS. All these techniques extract
keywords from source code to generate terms, and index cor-
responding code against the terms. However, none of the tech-
niques checks the appropriateness of the terms with respect to
implemented feature. As a result, the number of relevant codes
retrieved is reduced due to indexing against improper term.
Moreover, if two or more code snippets implement similar
feature but contain different terms, existing techniques cannot
retrieve all these code fragments simultaneously. The reason is
that these are indexed against different terms. So, to improve
recall in code search, feature-wise similar codes should be
indexed under common appropriate terms.

III. PROPOSED TECHNIQUE

In this paper, a technique named Similarity based Method
Finder (SBMF) has been proposed to improve recall in
code search. The technique comprises several steps such as
Reusable Method Generation, Clustering Similar Methods,
Proper Term Selection, Handling Methods Having API/Library
Function call, Index Construction, and Query Expansion. Each
of the steps is discussed as follows.

A. Reusable Method Generation

In this step, the proposed technique first parses the source
code to identify all the methods in the code. For each method,
it checks whether the body of that method contains any API/-
function call statement or not. If no such statement is found,
the technique takes the method to convert it into reusable
method (i.e., program slice that can execute independently
without having any dependency on other methods). Later, a
data dependency graph is constructed for the corresponding
method to determine its input and output types. Although the
signature of the method expresses the input and output types,
this is not sufficient enough to convert into reusable function
for several scenarios. For example, a method may have return
type void but it may manipulate one or more variables that
are declared outside the body of the method. A method may
not have any parameter (i.e., void) but use variables that are
defined outside the body of the method. Again, the signature
of a method may explicitly state the input and output types
but some variables may be used or manipulated by it and
these are declared outside the method body. Considering all
of these scenarios, the technique generates data dependency
graph to redefine the signature and convert into reusable
method. Each node in the graph denotes the variable and an
edge from a to b (a → b) denotes variable a depends on
variable b. After constructing the graph, nodes that have in
degree zero and variables denoted by these nodes are declared
outside the method body, are considered as input parameters.
Besides, nodes that have out degree zero are considered as
output variables of the method. If multiple output nodes are
found, a complex data type is created where each field of
the type denotes each node. The reason is that a method
return type can be a single data type - either primitive or
complex data type. The technique uses the variables found in
the nodes containing in degree zero to generate parameters of
the method. If a single node is found which out degree is zero,
the type of the variable denoted by the node is used as return
type of the method. Otherwise, generated composite data type
as discussed earlier is used. The signature of the method is
redefined by combining the return type, method name, and
parameters. It is possible to have one or more variables that
are declared outside the method body. In the data dependency
graph, nodes representing these variables may have at least
one in degree and one out degree. In this case, the technique
parses the source code and checks the declaration statements
of the variables to determine the types of the variables. Using
this information, it adds declaration statement for each of the
variables at the beginning of the function body. Thus, the

QuASoQ 2016 Workshop Preprints

51

technique makes the method self-executable without having
any external data dependency.

B. Clustering Similar Methods

To improve code search, it is required to check the similarity
among methods found in the code base. Two or more methods
may perform the same task in different ways. So, feature-wise
similar methods needs to be detected to retrieve the similar
methods all together. In Algorithm 1, the procedure named
ClusterSimilarMethods takes a list of reusable methods
(M) as input which is constructed following the previous step.
A variable C is declared to store different clusters of similar
methods where each cluster contains the methods that perform
the same functionality (Algorithm 1 Line 2). A for loop is
declared that iterates on M to construct cluster of similar
methods. The procedure IsInAnyCluster is invoked to check
whether each method m (belongs to M) is added to any cluster
or not previously (Algorithm 1 Lines 4-5). If m does not
belong to any cluster, a variable cl is declared to contain all the
methods similar to m. A set of input data is generated based
on the type of parameters found in the signature of m and
corresponding output is generated by executing m (Algorithm
1 Lines 9-10). Here inputset and outputset determine the
intent of m. Another for loop is declared to identify other
methods that are similar to m. In each iteration, the signature
of each method m′ (in M) is matched with the signature of
m to check whether the input data set can be fed into the
method and return type is identical to m (Algorithm 1 Line
15). If the signatures of both methods are identical, the method
m′ is executed for inputset and generated output is stored to
outputset′. If outputset and outputset′ are found the same,
m′ is considered similar to m as both methods produce same
output for the same input data set (Algorithm 1 Lines 17-19).
m′ is then added to cl to store all the methods similar to m.
At last, cl is inserted to the list of all identified clusters (C).

C. Proper Term Selection

In order to retrieve more relevant methods, it is required to
identify proper terms for each method before indexing. When
two or more methods have different names or signatures, but
implement the same functionality, these methods should be
indexed under common appropriate terms. As a result, all these
methods will be obtained against user query. So, after getting
all the clusters from the previous step, representative terms
are selected for each cluster. For a cluster, terms are obtained
from the methods found in the cluster through extracting,
tokenizing, and stemming keywords found in the methods.
Terms that are found in most of the methods are considered
as final representative terms for each of these methods.

D. Handling Methods Having API/Library Function call

As developers also search for example code to understand
the usage of an API, in this step, methods that have API call
statements are gathered. For each identified method, terms are
generated from API call statements to index against the terms.
As a result, if a query term does not match with the signature

Algorithm 1 Cluster Similar Methods
Require: A list of methods (M) for which search index will

be constructed
1: procedure CLUSTERSIMILARMETHODS(M)
2: C = ∅;
3: for each m ∈ M do
4: if IsInAnyCluster(m,C) == true then
5: continue
6: end if
7: cl = ∅
8: cl.add(m)
9: inputset = generate a set of input data randomly

for m
10: outputset = execute m and generate correspond-

ing output for inputset
11: for each m′ ∈ M do
12: if IsInAnyCluster(m′, C) == true then
13: continue
14: end if
15: if m′.paramtersTypes ==

m.parametersTypes & m′.returnType =
m.returnType then

16: outputset′ = execute m′ and generate cor-
responding output for inputset

17: if outputset == outputset′ then
18: cl.add(m′)
19: end if
20: end if
21: end for
22: C.add(cl)
23: end for
24: end procedure
25: procedure ISINANYCLUSTER(m,C)
26: found = false
27: for c ∈ C do
28: if m ∈ c then
29: found = true
30: break;
31: end if
32: end for
33: return found
34: end procedure

of a method but matches with the API invocation statements,
the method is retrieved as API usage example code.

E. Index Construction and Query Expansion

After generating appropriate terms for each method and
merging similar ones, an index is built for searching desired
methods. A posting list is created to construct index, which
maps terms with corresponding methods. Later, user query is
expanded to retrieve more relevant methods against the query.

Two procedures named ConstructIndex and Query, are
presented in Algorithm 2 to build index of methods obtained
from the previous steps, and refine user query, respectively. To

QuASoQ 2016 Workshop Preprints

52

construct the index, an empty posting list is declared, which
maps each term to corresponding methods (Algorithm 2 Lines
2). A nested for loop is defined, where the outer loop iterates
on a list of methods (M) given as input to the procedure
(Algorithm 2 Lines 3-4). The inner loop iterates to get all the
terms of each method in M . In addition, each term is checked
whether the posting list contains it or not to add a new term in
the list (Algorithm 2 Lines 5-7). Next, the method is added to
the posting list against the term so that, when a query term will
match with the term, the method will be retrieved (Algorithm
2 Lines 8). After adding all the methods, the list is returned
by the procedure (Algorithm 2 Lines 11).

In procedure Query, a boolean query is given as an argu-
ment, from which terms are separated and stored in a variable
named queryTerms to expand the query (Algorithm 2, Lines
13-14). A nested for loop is defined, where the outer loop
iterates on these terms (Algorithm 2, Lines 15-17). In each
iteration, a temporary variable (expandedTerm) initialized
with the corresponding term, is used to store synonyms of
the term. To expand each term, synonyms are appended
to expandedTerm in the inner loop (Algorithm 2, Lines
17-19). Later, each term in queryTerms is replaced with
corresponding expandedTerm for the expansion of the query
(Algorithm 2, Lines 20). As a result of the expansion, the
probability of matching a query string with the terms defined
in the index increases. Finally, the query is executed in the
index to retrieve intended methods, which are returned by the
procedure (Algorithm 2, Lines 22-23).

IV. IMPLEMENTATION AND RESULT ANALYSIS

In order to perform comparative result analysis, the pro-
posed technique (SBMF) was implemented in form of a
software tool. 50 open source projects were selected as data
sources for the experimental analysis. To evaluate the proposed
technique, 170 queries representing 9 different features were
executed by the tool. For comparative analysis, same queries
were also run on Sourcerer that supports KBCS and IDCS.

A. Environmental Setup

This section outlines the softwares and frameworks required
for the experimental analysis. SBMF was implemented using
C# programming language. Moreover, some other tools were
also used, which are addressed as follows:
• JavaParser: An open source library used to parse Java

source code (https://github.com/javaparser)
• Apache Lucene: A popular search engine infrastructure

used to index java methods and query over the index
(https://lucene.apache.org/)

• Luke: Open source lucene client used to execute query
on the lucene index and visualize the search results
(https://github.com/DmitryKey)

B. Dataset Selection

In order to perform experimental analysis, 50 open source
projects from sourceforge (https://sourceforge.net/) were se-
lected. Fraser and Arcuri showed that these projects are

Algorithm 2 Index Construction and Query Expansion
Require: A list of methods (M) containing signature, body

and terms of each method
1: procedure CONSTRUCTINDEX(M)
2: Map < String, List < Method >> postingList
3: for each m ∈ M do
4: for each t ∈ m.terms do
5: if !postingList.keys.contains(t) then
6: postingList.keys.add(t)
7: end if
8: postingList[t].add(m)
9: end for

10: end for
11: return postingList
12: end procedure
13: procedure QUERY(booleanQueryStr)
14: queryTerms=get all terms from booleanQueryStr
15: for each qt ∈ queryTerms do
16: expandedTerm = qt
17: for each syn ∈ synonyms of qt do
18: expandedTerms+ =” OR ”+syn
19: end for
20: queryTerms.replace(qt, expandedTerm)
21: end for
22: methods = obtain method from the index satisfying

queryTerms
23: return methods
24: end procedure

statistically sound and representatives of open source projects
[22].

A set of features were selected from the existing works
in code search [7], [16], [23], [24] as shown in Table I. On
the other hand, to evaluate the proposed technique, a set of
queries is selected from [7]. Here, each query is related to a
particular functionality shown in Table I and all the queries
are created randomly. 15 subjects were employed to identify
relevant methods for the functionalities. Among 15 subjects,
5 of them were senior Java developers and rest 10 were
masters student. The reason of choosing students in this study
is that they can play important role in software engineering
experiments [25]. All the experimental datasets are available
in this link1.

C. Comparative Result Analysis

For comparative result analysis, SBMF was run on the
experimental datasets and the relevance of retrieved methods
were checked for each user query. Moreover, Sourcerer which
supports KBCS and IDCS, was also run on the same datasets
and search results obtained by this were compared to SBMF.
Three metrics were used to evaluate the performance of SBMF
in comparison with KBCS and IDCS. These were recall, num-
ber of retrieved methods, and feature successfulness. Detailed

1http://tinyurl.com/zdqmoqz

QuASoQ 2016 Workshop Preprints

53

TABLE I
SELECTED FUNCTIONALITIES WITH FREQUENCY

Functionality # methods # queries
1 decoding String 13 20
2 encrypting password 3 27
3 decoding a URL 3 21
4 generating MD5 hash 3 16
5 rotating array 2 25
6 resizing image 3 25
7 scaling Image 3 19
8 encoding string to html 2 6
9 joining string 47 36

result analysis with respect to each of the metrics is discussed
as follows.

Recall Analysis: Recall is one of the most commonly used
metrics to measure the performance of traditional IR system.
As the intent of the paper is to improve recall in code search, it
is considered as an important metric to evaluate the proposed
technique. In this experiment, recall is defined as follows.

recall =
number of retrieved relevant methods

number of relevant methods in the repository

Fig. 1 depicts a comparative recall analysis among SBMF,
KBCS, and IDCS where X axis denotes the feature no. as
shown in TABLE I and Y axis represents the measured
recall. For feature 1 (Decoding String), approximately 15%
recall is shown in Fig. 1 for both KBCS and IDCS whereas
100% recall is found for SBMF. There are 13 methods in
the repository that implement the feature. Among these, two
methods are found which contain keywords decode and string
in method name and parameter respectively. As a result, these
methods are retrieved by both KBCS and IDCS. However,
these techniques cannot retrieve other 11 methods because
signatures of these methods do not contain any term related to
decode. While analyzing the source code of these methods, it
is seen that the bodies of these methods use third party APIs
like URLDecoder.decode(String, String), Hex.decode(String),
Base64.decode(base64), etc. to implement the feature. SMBF
takes terms from API call statements and indexes against the
terms to provide example codes regarding API usage. So, it
retrieves all these 13 methods.

For feature 2 (Encrypting Password), IDCS cannot find any
methods but 66.67% and 33.3% relevant methods are retrieved
by SBMF and KBCS respectively as shown in Fig. 1. To get
the methods that implement this feature, the following query
is provided to IDCS.

name:(encrypt) AND return:(String) AND parameter:(String)

Although there is a single method found in the code base that
has encrypt keyword in its name but does not have String in
its parameter. So, IDCS cannot obtain this method but KBCS
retrieves because query keyword matches with the method
name. However, SBMF retrieves one more method having
signature crypt(String strpw,String strsalt). The reason is that
encrypt and crypt both express the same intent as detected by
the query expansion part of SBMF (Algorithm 2).

Fig. 1. Recall Analysis

Fig. 2. Number of Retrieved Methods

There are 3 relevant methods in the experimental projects
that implement feature no. 3 (Decoding a URL). According to
Fig. 1 only a single method is retrieved by SBMF that produces
recall 33.33%. On the contrary, KBCS and IDCS cannot
retrieve any method related to the feature. This is because
no method contains decode and URL simultaneously in the
signature. Although one of these methods named getPath does
not provide any semantic information representing the fea-
ture, it invokes a library method - URLDecoder.decode(path,
”UTF-8”) which implements the feature. SBMF considers the
invocation statement for getting more relevant terms and thus,
retrieves this method. Two other methods cannot be retrieved
by SBMF due to finding no structural similarity among these
and no keywords representing the feature.

According to Fig. 1, 100% recall is obtained for SBMF,
and 33.33% for KBCS and IDCS individually with respect to
feature no. 4 (Generating MD5 hash). It is clear that SBMF

Fig. 3. Feature Successfulness Analysis

QuASoQ 2016 Workshop Preprints

54

has higher recall than other two approaches. The reason is that
most of the methods implementing this feature do not have
proper names to represent their intent. There are 5 methods
relevant to this feature and only one method is found having
name consistent with the feature. KBCS and IDCS fail to re-
trieve all these methods because both techniques extract terms
from individual method and do not consider appropriateness
of the terms. However, SBMF finds that these methods are
semantically similar. So, these methods are indexed under
common terms. As a result, when user query matches with
one of these methods, other three methods are also retrieved
with this.

For feature no. 5, 6 and 7, IDCS cannot retrieve any
method from the code base used in this experiment. The
reason is that appropriate parameter type is not determined
in the user queries used for this feature. However, KBCS
shows 50%, 33.33%, and 66.67% recall for feature no. 5, 6
and 7 respectively. On the other hand, SBMF shows 100%
for features no. 5 and 7, and 33.33% for feature no. 6 as
illustrated in Fig. 1. For feature no. 5, two relevant methods are
found which names are transpose and rotate correspondingly.
These two methods are feature-wise similar which is detected
by SBMF and indexed under common terms (i.e., rotate and
transpose). On the other hand, KBCS does not check similarity,
and analyzes each method individually during indexing. So,
only rotate method is retrieved by KBCS. For feature no. 7,
SBMF retrieves one more method than KBCS because this
method does not contain any term related to image but it uses
a field of type Image. SBMF considers this usage since scaling
operation is performed on this field by the method, and adds
additional term Image against the method.

SBMF, KBCS, and IDCS show equal performance for
feature no. 8 (Encoding String to HTML) in terms of recall.
However, 50% relevant methods cannot be retrieved because
no HTML keyword is found in these method.

Only SBMF is able to retrieve 21 relevant methods whereas
other techniques cannot fetch a single method for feature no. 9
(Joining String). Here, SBMF outperforms because it identifies
many structurally similar methods which have different names
but all these perform string concatenation. Among these,
several methods are found which have proper keywords in
their body. These keywords are attached to the term list of
each similar method by SBMF. As a result, these are indexed
under common appropriate terms and all these are retrieved
simultaneously. However, other 26 relevant methods cannot be
retrieved since no signature matching is found among these.

Number of Retrieved Methods (NRM) and Feature
Successfulness Analysis: As NRM is an important measure to
perceive recall of a search engine, a comparative result analysis
with respect to NRM is performed here. A bar diagram is
shown in Fig. 2 depicting feature-wise NRM by SBMF, KBCS,
and IDCS. According to the diagram, SBMF retrieves more
methods than KBCS and IDCS because of adding common
terms to each method.

Although IDCS produces better precision than KBCS and
SBMF, it cannot retrieve a single method for some features

(such as feature No, 2, 3, 5, 6, 7, 9). The reason is that
user queries do not have proper parameter type or return
type. This scenario is common when developers have little or
no knowledge about the implementation of a feature. KBCS
and SBMF mitigate the problem by retrieving more relevant
methods adopting free text search. In order to determine
whether a feature is successful or not, a metric named feature
successfulness is introduced. A feature is said to be successful
if at least one relevant method is retrieved that implements
the feature. Fig. 3 presents the number of successful features
among SBMF, KBCS, and IDCS. According to this figure,
SBMF is successful for all the 9 features whereas 7 and 3
successful features are found for KBCS and IDCS respectively.
This measure provides a notion that having higher precision
is not effective if number of successful feature is low. In
addition, improving recall increases the chances of having
higher number of successful feature. For this reason, SBMF
performs better than KBCS and IDCS.

V. THREATS TO VALIDITY

In this section, limitations of the experimental study are
discussed in terms of internal, external, and construct validity.

a) Internal Validity: In the experiment, there was no
control over the skills of the subjects. However, the risks of
this threat are reduced by applying repetitive measurement
approach because same user created queries for KBCS, IDCS,
and SBMF and evaluated the search results.

b) External Validity: The set of features selected may not
generalize to the population of software functions. However,
these features are among the most common features used for
the evaluation in code search. Another possible threat is that
projects used in the experiment may not be sufficient enough.
However, these projects are statistically representative of open
source projects as highlighted in [7].

c) Construct Validity: Existing code clone detection
technique can be used to improve recall in code search.
However, SBMF differs from code clone detection in several
points. SBMF can detect similar methods written in different
programming languages and only the execution of method is
platform dependent. Another point is that code clone detection
technique may provide false positive results to feature-wise
clone detection (usually known as Type IV) if values of certain
parameters are not defined properly [26]. As a result search en-
gine may retrieve irrelevant methods. However, SBMF checks
dynamic behavior through executing method and matches the
output for corresponding input to detect feature-wise similar
methods. Such mechanism ensures that methods providing the
same output, are feature-wise similar and thus no irrelevant
method is added to these methods. Besides recall, two other
metrics are used in the study to observe the effectiveness of
the technique. Although precision is not shown directly in the
result analysis due to space limitation, it can be obtained by
using data given in TABLE I and Fig. 2.

VI. CONCLUSION

The recall of a code search engine reduces if similar code
fragments are indexed under common proper terms. So, a

QuASoQ 2016 Workshop Preprints

55

technique named SBMF is proposed in this paper which
indexes both syntactically and semantically similar methods
under common terms. The technique is implemented as a
complete software, that constructs index and retrieves relevant
methods against the user query.

SBMF first identifies all the methods in the code base by
parsing the source code. It converts the methods into reusable
methods by resolving data dependency and redefining method
signature. Feature-wise similar methods are detected through
checking signature and executing methods. Here, methods that
produce the same output set for a randomly generated set of
input values, are considered as similar methods and these are
kept under a cluster. Thus, all the methods are distributed
into a set of clusters where each cluster contains feature-wise
similar methods and any two clusters differ from one another
in implemented feature. All these methods are indexed against
the terms that are found in more than half of the methods in
the cluster. At last, query expansion is performed to increase
the probability of retrieving more methods.

For experimental analysis of the technique, 50 open source
projects were selected to build the code base and 9 features
were chosen to generate queries. An existing technique named
Sourcerer was used to compare the results to SBMF. While
analyzing the results it has been seen that SBMF shows 38%
improvement in recall than KBCS and 58% than IDCS. It
also retrieves relevant methods for all the 9 features, whereas
KBCS and IDCS retrieves for 7 and 3 features, respectively.
In future, the experiment will be conducted on a large scale
dataset to observe the behavior of the technique.

ACKNOWLEDGMENT

This research is supported by ICT Division, Ministry
of Posts, Telecommunications and Information Technology,
Bangladesh. 56.00.0000.028.33.065.16-747, 14-06-2016.

REFERENCES

[1] Ruben Prieto-Diaz. Implementing faceted classification for software
reuse. Communications of the ACM, 34(5):88–97, 1991.

[2] Renuka Sindhgatta. Using an information retrieval system to retrieve
source code samples. In Proceedings of the 28th international confer-
ence on Software engineering, pages 905–908. ACM, 2006.

[3] Hinrich Schütze. Introduction to information retrieval. In Proceedings of
the international communication of association for computing machinery
conference, 2008.

[4] Randy Smith and Susan Horwitz. Detecting and measuring similarity in
code clones. In Proceedings of the International workshop on Software
Clones (IWSC), 2009.

[5] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a
multilinguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28(7):654–
670, 2002.

[6] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre
Baldi. Mining concepts from code with probabilistic topic models. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 461–464. ACM, 2007.

[7] Otávio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Hitesh
Sajnani, and Cristina V Lopes. Can the use of types and query
expansion help improve large-scale code search? In Source Code
Analysis and Manipulation (SCAM), 2015 IEEE 15th International
Working Conference on, pages 41–50. IEEE, 2015.

[8] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,
Pierre Baldi, and Cristina Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 681–682. ACM, 2006.

[9] Andrew Begel. Codifier: a programmer-centric search user interface.
In Proceedings of the workshop on human-computer interaction and
information retrieval, pages 23–24, 2007.

[10] Susan Elliott Sim and Rosalva E Gallardo-Valencia. Finding source
code on the web for remix and reuse. Springer, 2013.

[11] Suresh Thummalapenta and Tao Xie. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, pages 204–213. ACM, 2007.

[12] Reid Holmes, Robert J Walker, and Gail C Murphy. Strathcona example
recommendation tool. In ACM SIGSOFT Software Engineering Notes,
volume 30, pages 237–240. ACM, 2005.

[13] Amy Moormann Zaremski and Jeannette M Wing. Signature matching:
a tool for using software libraries. ACM Transactions on Software
Engineering and Methodology (TOSEM), 4(2):146–170, 1995.

[14] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel
Ossher. Codegenie:: a tool for test-driven source code search. In
Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 917–918.
ACM, 2007.

[15] Werner Janjic and Colin Atkinson. Leveraging software search and reuse
with automated software adaptation. In Search-Driven Development-
Users, Infrastructure, Tools and Evaluation (SUITE), 2012 ICSE Work-
shop on, pages 23–26. IEEE, 2012.

[16] Steven P Reiss. Semantics-based code search. In Proceedings of the
31st International Conference on Software Engineering, pages 243–253.
IEEE Computer Society, 2009.

[17] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: mining for
sample code. ACM Sigplan Notices, 41(10):413–430, 2006.

[18] Wayne C Lim. Effects of reuse on quality, productivity, and economics.
IEEE software, 11(5):23–30, 1994.

[19] Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. Code reuse
in open source software. Management Science, 54(1):180–193, 2008.

[20] William B Frakes and Brian A Nejmeh. Software reuse through
information retrieval. In ACM SIGIR Forum, volume 21, pages 30–36.
ACM, 1986.

[21] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. Archetypal
source code searches: A survey of software developers and maintainers.
In Program Comprehension, 1998. IWPC’98. Proceedings., 6th Interna-
tional Workshop on, pages 180–187. IEEE, 1998.

[22] Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software
testing. In Proceedings of the 34th International Conference on Software
Engineering, pages 178–188. IEEE Press, 2012.

[23] OtáVio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher,
Paulo Cesar Masiero, and Cristina Lopes. A test-driven approach to
code search and its application to the reuse of auxiliary functionality.
Information and Software Technology, 53(4):294–306, 2011.

[24] Otávio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and
Cristina V Lopes. Thesaurus-based automatic query expansion for
interface-driven code search. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 212–221. ACM,
2014.

[25] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard,
Peter W Jones, David C. Hoaglin, Khaled El Emam, and Jarrett
Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on software engineering, 28(8):721–
734, 2002.

[26] Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun
Qiu, and Tao Xie. Xiao: tuning code clones at hands of engineers
in practice. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 369–378. ACM, 2012.

QuASoQ 2016 Workshop Preprints

56

	Frontpage
	Table of Contents
	QUASOQ-01
	QUASOQ-03
	QUASOQ-04
	QUASOQ-05
	QUASOQ-06
	QUASOQ-08
	I Introduction
	II Background and Related Work
	II-A Requirements engineering for sustainable systems
	II-B Sustainability Profiling
	II-C Quantitative Approach
	II-D The Fuzzy Rating Scale
	II-E TOPSIS

	III Framework for Sustainability Profiling
	III-A Assigning Stakeholders
	III-B Defining Questions
	III-C Rating Requirements
	III-D Analysing Sustainability Using TOPSIS
	III-E Generating Software Sustainability Profiling

	IV Application of the Proposed Framework
	IV-A Assigning Stakeholders
	IV-B Defining Questions
	IV-C Rating Requirements
	IV-D Analysing Sustainability
	IV-E Sustainability Profiling

	V Discussion and Conclusions
	References

	QUASOQ-09

